golang中的网络编程和http处理流程
今天就跟大家聊聊有关golang中的网络编程和http处理流程,大部分知识点都是大家经常用到的,为此分享给大家做个参考。一起跟随小编过来看看吧。
创新互联是一家集网站建设,神木企业网站建设,神木品牌网站建设,网站定制,神木网站建设报价,网络营销,网络优化,神木网站推广为一体的创新建站企业,帮助传统企业提升企业形象加强企业竞争力。可充分满足这一群体相比中小企业更为丰富、高端、多元的互联网需求。同时我们时刻保持专业、时尚、前沿,时刻以成就客户成长自我,坚持不断学习、思考、沉淀、净化自己,让我们为更多的企业打造出实用型网站。
一、简介
go语言中的网络编程主要通过net包实现,net包提供了网络I/O接口,包括HTTP、TCP/IP、UDP、域名解析和Unix域socket等。和大多数语言一样go可以使用几行代码便可以启动一个服务器,但是得益于goroutine的配合go实现的服务器拥有强大并发处理能力。
二、socket编程
Socket又称"套接字",应用程序通常通过"套接字"向网络发出请求或者应答网络请求。
socket本质上就是在2台网络互通的电脑之间,架设一个通道,两台电脑通过这个通道来实现数据的互相传递。 我们知道网络 通信 都 是基于 ip+port 方能定位到目标的具体机器上的具体服务,操作系统有0-65535个端口,每个端口都可以独立对外提供服务,如果 把一个公司比做一台电脑 ,那公司的总机号码就相当于ip地址, 每个员工的分机号就相当于端口, 你想找公司某个人,必须 先打电话到总机,然后再转分机 。
go中socket编程实现起来非常方便,下面是处理流程
服务器端:
1、监听端口
2、接受客户端连接
3、创建goroutine处理连接
客户端:
1、建立连接
2、收发数据
3、关闭连接
服务端示例:
package main import ( "fmt" "net" ) func handle(conn net.Conn) { //处理连接方法 defer conn.Close() //关闭连接 for{ buf := make([]byte,100) n,err := conn.Read(buf) //读取客户端数据 if err!=nil { fmt.Println(err) return } fmt.Printf("read data size %d msg:%s", n, string(buf[0:n])) msg := []byte("hello,world\n") conn.Write(msg) //发送数据 } } func main() { fmt.Println("start server....") listen,err := net.Listen("tcp","0.0.0.0:3000") //创建监听 if err != nil{ fmt.Println("listen failed! msg :" ,err) return } for{ conn,errs := listen.Accept() //接受客户端连接 if errs != nil{ fmt.Println("accept failed") continue } go handle(conn) //处理连接 } }
客户端示例:
package main import ( "bufio" "fmt" "net" "os" "strings" ) func main() { conn, err := net.Dial("tcp", "127.0.0.1:3000") if err != nil { fmt.Println("err dialing:", err.Error()) return } defer conn.Close() inputReader := bufio.NewReader(os.Stdin) for { str, _ := inputReader.ReadString('\n') data := strings.Trim(str, "\n") if data == "quit" { //输入quit退出 return } _, err := conn.Write([]byte(data)) //发送数据 if err != nil { fmt.Println("send data error:", err) return } buf := make([]byte,512) n,err := conn.Read(buf) //读取服务端端数据 fmt.Println("from server:", string(buf[:n])) } }
conn示例还提供其他方法:
type Conn interface { // Read reads data from the connection. // Read can be made to time out and return an Error with Timeout() == true // after a fixed time limit; see SetDeadline and SetReadDeadline. Read(b []byte) (n int, err error) //读取连接中数据 // Write writes data to the connection. // Write can be made to time out and return an Error with Timeout() == true // after a fixed time limit; see SetDeadline and SetWriteDeadline. Write(b []byte) (n int, err error) //发送数据 // Close closes the connection. // Any blocked Read or Write operations will be unblocked and return errors. Close() error //关闭链接 // LocalAddr returns the local network address. LocalAddr() Addr //返回本地连接地址 // RemoteAddr returns the remote network address. RemoteAddr() Addr //返回远程连接的地址 // SetDeadline sets the read and write deadlines associated // with the connection. It is equivalent to calling both // SetReadDeadline and SetWriteDeadline. // // A deadline is an absolute time after which I/O operations // fail with a timeout (see type Error) instead of // blocking. The deadline applies to all future and pending // I/O, not just the immediately following call to Read or // Write. After a deadline has been exceeded, the connection // can be refreshed by setting a deadline in the future. // // An idle timeout can be implemented by repeatedly extending // the deadline after successful Read or Write calls. // // A zero value for t means I/O operations will not time out. SetDeadline(t time.Time) error //设置链接读取或者写超时时间 // SetReadDeadline sets the deadline for future Read calls // and any currently-blocked Read call. // A zero value for t means Read will not time out. SetReadDeadline(t time.Time) error //单独设置读取超时时间 // SetWriteDeadline sets the deadline for future Write calls // and any currently-blocked Write call. // Even if write times out, it may return n > 0, indicating that // some of the data was successfully written. // A zero value for t means Write will not time out. SetWriteDeadline(t time.Time) error//单独设置写超时时间 }
三、go中HTTP服务处理流程
简介
网络发展,很多网络应用都是构建再 HTTP 服务基础之上。HTTP 协议从诞生到现在,发展从1.0,1.1到2.0也不断再进步。除去细节,理解 HTTP 构建的网络应用只要关注两个端---客户端(clinet)和服务端(server),两个端的交互来自 clinet 的 request,以及server端的response。所谓的http服务器,主要在于如何接受 clinet 的 request,并向client返回response。接收request的过程中,最重要的莫过于路由(router),即实现一个Multiplexer器。Go中既可以使用内置的mutilplexer --- DefautServeMux,也可以自定义。Multiplexer路由的目的就是为了找到处理器函数(handler),后者将对request进行处理,同时构建response。
最后简化的请求处理流程为:
Clinet -> Requests -> [Multiplexer(router) -> handler -> Response -> Clinet
因此,理解go中的http服务,最重要就是要理解Multiplexer和handler,Golang中的Multiplexer基于ServeMux结构,同时也实现了Handler接口。
对象说明:
1、hander函数: 具有func(w http.ResponseWriter, r *http.Requests)签名的函数
2、handler函数: 经过HandlerFunc结构包装的handler函数,它实现了ServeHTTP接口方法的函数。调用handler处理器的ServeHTTP方法时,即调用handler函数本身。
3、handler对象:实现了Handler接口ServeHTTP方法的结构。
handler处理器和handler对象的差别在于,一个是函数,另外一个是结构,它们都有实现了ServeHTTP方法。很多情况下它们的功能类似,下文就使用统称为handler。
Handler
Golang没有继承,类多态的方式可以通过接口实现。所谓接口则是定义声明了函数签名,任何结构只要实现了与接口函数签名相同的方法,就等同于实现了接口。go的http服务都是基于handler进行处理。
type Handler interface { ServeHTTP(ResponseWriter, *Request) }
任何结构体,只要实现了ServeHTTP方法,这个结构就可以称之为handler对象。ServeMux会使用handler并调用其ServeHTTP方法处理请求并返回响应。
ServeMux
源码部分:
type ServeMux struct { mu sync.RWMutex m map[string]muxEntry hosts bool } type muxEntry struct { explicit bool h Handler pattern string }
ServeMux结构中最重要的字段为m,这是一个map,key是一些url模式,value是一个muxEntry结构,后者里定义存储了具体的url模式和handler。
当然,所谓的ServeMux也实现了ServeHTTP接口,也算是一个handler,不过ServeMux的ServeHTTP方法不是用来处理request和respone,而是用来找到路由注册的handler,后面再做解释。
Server
除了ServeMux和Handler,还有一个结构Server需要了解。从http.ListenAndServe的源码可以看出,它创建了一个server对象,并调用server对象的ListenAndServe方法:
func ListenAndServe(addr string, handler Handler) error { server := &Server{Addr: addr, Handler: handler} return server.ListenAndServe() }
查看server的结构如下:
type Server struct { Addr string Handler Handler ReadTimeout time.Duration WriteTimeout time.Duration TLSConfig *tls.Config MaxHeaderBytes int TLSNextProto map[string]func(*Server, *tls.Conn, Handler) ConnState func(net.Conn, ConnState) ErrorLog *log.Logger disableKeepAlives int32 nextProtoOnce sync.Once nextProtoErr error }
server结构存储了服务器处理请求常见的字段。其中Handler字段也保留Handler接口。如果Server接口没有提供Handler结构对象,那么会使用DefautServeMux做multiplexer,后面再做分析。
创建HTTP服务
创建一个http服务,大致需要经历两个过程,首先需要注册路由,即提供url模式和handler函数的映射,其次就是实例化一个server对象,并开启对客户端的监听。
http.HandleFunc("/", indexHandler) http.ListenAndServe("127.0.0.1:8000", nil) 或 server := &Server{Addr: addr, Handler: handler} server.ListenAndServe()
示例:
package main import ( "fmt" "net/http" ) func Hello(w http.ResponseWriter, r *http.Request) { fmt.Println("Hello World.") fmt.Fprintf(w, "Hello World.\n") } func main() { http.HandleFunc("/", Hello) err := http.ListenAndServe("0.0.0.0:6000", nil) if err != nil { fmt.Println("http listen failed.") } } //curl http://127.0.0.1:6000 // 结果:Hello World
路由注册
net/http包暴露的注册路由的api很简单,http.HandleFunc选取了DefaultServeMux作为multiplexer:
func HandleFunc(pattern string, handler func(ResponseWriter, *Request)) { DefaultServeMux.HandleFunc(pattern, handler) }
DefaultServeMux是ServeMux的一个实例。当然http包也提供了NewServeMux方法创建一个ServeMux实例,默认则创建一个DefaultServeMux:
// NewServeMux allocates and returns a new ServeMux. func NewServeMux() *ServeMux { return new(ServeMux) } // DefaultServeMux is the default ServeMux used by Serve. var DefaultServeMux = &defaultServeMux var defaultServeMux ServeMux
DefaultServeMux的HandleFunc(pattern, handler)方法实际是定义在ServeMux下的:
// HandleFunc registers the handler function for the given pattern.func (mux *ServeMux) HandleFunc(pattern string, handler func(ResponseWriter, *Request)) { mux.Handle(pattern, HandlerFunc(handler)) }
HandlerFunc是一个函数类型。同时实现了Handler接口的ServeHTTP方法。使用HandlerFunc类型包装一下路由定义的indexHandler函数,其目的就是为了让这个函数也实现ServeHTTP方法,即转变成一个handler处理器(函数)。
type HandlerFunc func(ResponseWriter, *Request) // ServeHTTP calls f(w, r). func (f HandlerFunc) ServeHTTP(w ResponseWriter, r *Request) { f(w, r) }
我们最开始写的例子中
http.HandleFunc("/",Indexhandler)
这样 IndexHandler 函数也有了ServeHTTP方法。ServeMux的Handle方法,将会对pattern和handler函数做一个map映射:
func ListenAndServe(addr string, handler Handler) error { server := &Server{Addr: addr, Handler: handler} return server.ListenAndServe() } // ListenAndServe listens on the TCP network address srv.Addr and then // calls Serve to handle requests on incoming connections. // Accepted connections are configured to enable TCP keep-alives. // If srv.Addr is blank, ":http" is used. // ListenAndServe always returns a non-nil error. func (srv *Server) ListenAndServe() error { addr := srv.Addr if addr == "" { addr = ":http" } ln, err := net.Listen("tcp", addr) if err != nil { return err } return srv.Serve(tcpKeepAliveListener{ln.(*net.TCPListener)}) }
Server的ListenAndServe方法中,会初始化监听地址Addr,同时调用Listen方法设置监听。最后将监听的TCP对象传入Serve方法:
// Serve accepts incoming connections on the Listener l, creating a // new service goroutine for each. The service goroutines read requests and // then call srv.Handler to reply to them. // // For HTTP/2 support, srv.TLSConfig should be initialized to the // provided listener's TLS Config before calling Serve. If // srv.TLSConfig is non-nil and doesn't include the string "h3" in // Config.NextProtos, HTTP/2 support is not enabled. // // Serve always returns a non-nil error. After Shutdown or Close, the // returned error is ErrServerClosed. func (srv *Server) Serve(l net.Listener) error { defer l.Close() if fn := testHookServerServe; fn != nil { fn(srv, l) } var tempDelay time.Duration // how long to sleep on accept failure if err := srv.setupHTTP2_Serve(); err != nil { return err } srv.trackListener(l, true) defer srv.trackListener(l, false) baseCtx := context.Background() // base is always background, per Issue 16220 ctx := context.WithValue(baseCtx, ServerContextKey, srv) for { rw, e := l.Accept() if e != nil { select { case <-srv.getDoneChan(): return ErrServerClosed default: } if ne, ok := e.(net.Error); ok && ne.Temporary() { if tempDelay == 0 { tempDelay = 5 * time.Millisecond } else { tempDelay *= 2 } if max := 1 * time.Second; tempDelay > max { tempDelay = max } srv.logf("http: Accept error: %v; retrying in %v", e, tempDelay) time.Sleep(tempDelay) continue } return e } tempDelay = 0 c := srv.newConn(rw) c.setState(c.rwc, StateNew) // before Serve can return go c.serve(ctx) } }
监听开启之后,一旦客户端请求到底,go就开启一个协程处理请求,主要逻辑都在serve方法之中。
serve方法比较长,其主要职能就是,创建一个上下文对象,然后调用Listener的Accept方法用来 获取连接数据并使用newConn方法创建连接对象。最后使用goroutine协程的方式处理连接请求。因为每一个连接都开起了一个协程,请求的上下文都不同,同时又保证了go的高并发。serve也是一个长长的方法:
// Serve a new connection. func (c *conn) serve(ctx context.Context) { c.remoteAddr = c.rwc.RemoteAddr().String() ctx = context.WithValue(ctx, LocalAddrContextKey, c.rwc.LocalAddr()) defer func() { if err := recover(); err != nil && err != ErrAbortHandler { const size = 64 << 10 buf := make([]byte, size) buf = buf[:runtime.Stack(buf, false)] c.server.logf("http: panic serving %v: %v\n%s", c.remoteAddr, err, buf) } if !c.hijacked() { c.close() c.setState(c.rwc, StateClosed) } }() if tlsConn, ok := c.rwc.(*tls.Conn); ok { if d := c.server.ReadTimeout; d != 0 { c.rwc.SetReadDeadline(time.Now().Add(d)) } if d := c.server.WriteTimeout; d != 0 { c.rwc.SetWriteDeadline(time.Now().Add(d)) } if err := tlsConn.Handshake(); err != nil { c.server.logf("http: TLS handshake error from %s: %v", c.rwc.RemoteAddr(), err) return } c.tlsState = new(tls.ConnectionState) *c.tlsState = tlsConn.ConnectionState() if proto := c.tlsState.NegotiatedProtocol; validNPN(proto) { if fn := c.server.TLSNextProto[proto]; fn != nil { h := initNPNRequest{tlsConn, serverHandler{c.server}} fn(c.server, tlsConn, h) } return } } // HTTP/1.x from here on. ctx, cancelCtx := context.WithCancel(ctx) c.cancelCtx = cancelCtx defer cancelCtx() c.r = &connReader{conn: c} c.bufr = newBufioReader(c.r) c.bufw = newBufioWriterSize(checkConnErrorWriter{c}, 4<<10) for { w, err := c.readRequest(ctx) if c.r.remain != c.server.initialReadLimitSize() { // If we read any bytes off the wire, we're active. c.setState(c.rwc, StateActive) } if err != nil { const errorHeaders = "\r\nContent-Type: text/plain; charset=utf-8\r\nConnection: close\r\n\r\n" if err == errTooLarge { // Their HTTP client may or may not be // able to read this if we're // responding to them and hanging up // while they're still writing their // request. Undefined behavior. const publicErr = "431 Request Header Fields Too Large" fmt.Fprintf(c.rwc, "HTTP/1.1 "+publicErr+errorHeaders+publicErr) c.closeWriteAndWait() return } if isCommonNetReadError(err) { return // don't reply } publicErr := "400 Bad Request" if v, ok := err.(badRequestError); ok { publicErr = publicErr + ": " + string(v) } fmt.Fprintf(c.rwc, "HTTP/1.1 "+publicErr+errorHeaders+publicErr) return } // Expect 100 Continue support req := w.req if req.expectsContinue() { if req.ProtoAtLeast(1, 1) && req.ContentLength != 0 { // Wrap the Body reader with one that replies on the connection req.Body = &expectContinueReader{readCloser: req.Body, resp: w} } } else if req.Header.get("Expect") != "" { w.sendExpectationFailed() return } c.curReq.Store(w) if requestBodyRemains(req.Body) { registerOnHitEOF(req.Body, w.conn.r.startBackgroundRead) } else { if w.conn.bufr.Buffered() > 0 { w.conn.r.closeNotifyFromPipelinedRequest() } w.conn.r.startBackgroundRead() } // HTTP cannot have multiple simultaneous active requests.[*] // Until the server replies to this request, it can't read another, // so we might as well run the handler in this goroutine. // [*] Not strictly true: HTTP pipelining. We could let them all process // in parallel even if their responses need to be serialized. // But we're not going to implement HTTP pipelining because it // was never deployed in the wild and the answer is HTTP/2. serverHandler{c.server}.ServeHTTP(w, w.req) w.cancelCtx() if c.hijacked() { return } w.finishRequest() if !w.shouldReuseConnection() { if w.requestBodyLimitHit || w.closedRequestBodyEarly() { c.closeWriteAndWait() } return } c.setState(c.rwc, StateIdle) c.curReq.Store((*response)(nil)) if !w.conn.server.doKeepAlives() { // We're in shutdown mode. We might've replied // to the user without "Connection: close" and // they might think they can send another // request, but such is life with HTTP/1.1. return } if d := c.server.idleTimeout(); d != 0 { c.rwc.SetReadDeadline(time.Now().Add(d)) if _, err := c.bufr.Peek(4); err != nil { return } } c.rwc.SetReadDeadline(time.Time{}) } } serve方法
使用defer定义了函数退出时,连接关闭相关的处理。然后就是读取连接的网络数据,并处理读取完毕时候的状态。接下来就是调用serverHandler{c.server}.ServeHTTP(w, w.req)方法处理请求了。最后就是请求处理完毕的逻辑。
serverHandler是一个重要的结构,它近有一个字段,即Server结构,同时它也实现了Handler接口方法ServeHTTP,并在该接口方法中做了一个重要的事情,初始化multiplexer路由多路复用器。
如果server对象没有指定Handler,则使用默认的DefaultServeMux作为路由Multiplexer。并调用初始化Handler的ServeHTTP方法。
// serverHandler delegates to either the server's Handler or // DefaultServeMux and also handles "OPTIONS *" requests. type serverHandler struct { srv *Server } func (sh serverHandler) ServeHTTP(rw ResponseWriter, req *Request) { handler := sh.srv.Handler if handler == nil { handler = DefaultServeMux } if req.RequestURI == "*" && req.Method == "OPTIONS" { handler = globalOptionsHandler{} } handler.ServeHTTP(rw, req) }
这里DefaultServeMux的ServeHTTP方法其实也是定义在ServeMux结构中的,相关代码如下:
// Find a handler on a handler map given a path string. // Most-specific (longest) pattern wins. func (mux *ServeMux) match(path string) (h Handler, pattern string) { // Check for exact match first. v, ok := mux.m[path] if ok { return v.h, v.pattern } // Check for longest valid match. var n = 0 for k, v := range mux.m { if !pathMatch(k, path) { continue } if h == nil || len(k) > n { n = len(k) h = v.h pattern = v.pattern } } return } func (mux *ServeMux) Handler(r *Request) (h Handler, pattern string) { // CONNECT requests are not canonicalized. if r.Method == "CONNECT" { return mux.handler(r.Host, r.URL.Path) } // All other requests have any port stripped and path cleaned // before passing to mux.handler. host := stripHostPort(r.Host) path := cleanPath(r.URL.Path) if path != r.URL.Path { _, pattern = mux.handler(host, path) url := *r.URL url.Path = path return RedirectHandler(url.String(), StatusMovedPermanently), pattern } return mux.handler(host, r.URL.Path) } // handler is the main implementation of Handler. // The path is known to be in canonical form, except for CONNECT methods. func (mux *ServeMux) handler(host, path string) (h Handler, pattern string) { mux.mu.RLock() defer mux.mu.RUnlock() // Host-specific pattern takes precedence over generic ones if mux.hosts { h, pattern = mux.match(host + path) } if h == nil { h, pattern = mux.match(path) } if h == nil { h, pattern = NotFoundHandler(), "" } return } // ServeHTTP dispatches the request to the handler whose // pattern most closely matches the request URL. func (mux *ServeMux) ServeHTTP(w ResponseWriter, r *Request) { if r.RequestURI == "*" { if r.ProtoAtLeast(1, 1) { w.Header().Set("Connection", "close") } w.WriteHeader(StatusBadRequest) return } h, _ := mux.Handler(r) h.ServeHTTP(w, r) }
mux的ServeHTTP方法通过调用其Handler方法寻找注册到路由上的handler函数,并调用该函数的ServeHTTP方法,本例则是IndexHandler函数。
mux的Handler方法对URL简单的处理,然后调用handler方法,后者会创建一个锁,同时调用match方法返回一个handler和pattern。 在match方法中,mux的m字段是map[string]muxEntry图,后者存储了pattern和handler处理器函数,因此通过迭代m寻找出注册路由的patten模式与实际url匹配的handler函数并返回。
返回的结构一直传递到mux的ServeHTTP方法,接下来调用handler函数的ServeHTTP方法,即IndexHandler函数,然后把response写到http.RequestWirter对象返回给客户端。
上述函数运行结束即`serverHandler{c.server}.ServeHTTP(w, w.req)`运行结束。接下来就是对请求处理完毕之后上希望和连接断开的相关逻辑。 至此,Golang中一个完整的http服务介绍完毕,包括注册路由,开启监听,处理连接,路由处理函数。
总结
多数的web应用基于HTTP协议,客户端和服务器通过request-response的方式交互。一个server并不可少的两部分莫过于路由注册和连接处理。Golang通过一个ServeMux实现了的multiplexer路由多路复用器来管理路由。同时提供一个Handler接口提供ServeHTTP用来实现handler处理其函数,后者可以处理实际request并构造response。
ServeMux和handler处理器函数的连接桥梁就是Handler接口。ServeMux的ServeHTTP方法实现了寻找注册路由的handler的函数,并调用该handler的ServeHTTP方法。
ServeHTTP方法就是真正处理请求和构造响应的地方。 回顾go的http包实现http服务的流程,可见大师们的编码设计之功力。学习有利提高自身的代码逻辑组织能力。更好的学习方式除了阅读,就是实践,接下来,我们将着重讨论来构建http服务。尤其是构建http中间件函数。
四、HTTP客户端工具
net/http不仅提供了服务端处理,还提供了客户端处理功能。
http包中提供了Get、Post、Head、PostForm方法实现HTTP请求:
//GET func Get(url string) (resp *Response, err error) { return DefaultClient.Get(url) } //POST func Post(url string, contentType string, body io.Reader) (resp *Response, err error) { return DefaultClient.Post(url, contentType, body) } //HEAD func Head(url string) (resp *Response, err error) { return DefaultClient.Head(url) } //POSTFORM func PostForm(url string, data url.Values) (resp *Response, err error) { return DefaultClient.PostForm(url, data) }
GET请求示例
package main import ( "fmt" "net/http" "log" "reflect" "bytes" ) func main() { resp, err := http.Get("http://www.baidu.com") if err != nil { // 错误处理 log.Println(err) return } defer resp.Body.Close() //关闭链接 headers := resp.Header for k, v := range headers { fmt.Printf("k=%v, v=%v\n", k, v) //所有头信息 } fmt.Printf("resp status %s,statusCode %d\n", resp.Status, resp.StatusCode) fmt.Printf("resp Proto %s\n", resp.Proto) fmt.Printf("resp content length %d\n", resp.ContentLength) fmt.Printf("resp transfer encoding %v\n", resp.TransferEncoding) fmt.Printf("resp Uncompressed %t\n", resp.Uncompressed) fmt.Println(reflect.TypeOf(resp.Body)) buf := bytes.NewBuffer(make([]byte, 0, 512)) length, _ := buf.ReadFrom(resp.Body) fmt.Println(len(buf.Bytes())) fmt.Println(length) fmt.Println(string(buf.Bytes())) }
使用http.Do设置请求头、cookie等
package main import ( "net/http" "strings" "io/ioutil" "log" "fmt" ) func main() { client := &http.Client{} req, err := http.NewRequest("POST", "http://www.baidu.com", strings.NewReader("name=xxxx&passwd=xxxx")) if err != nil { fmt.Println(err) return } req.Header.Set("Content-Type", "application/x-www-form-urlencoded; charset=UTF-8") //设置请求头信息 resp, err := client.Do(req) defer resp.Body.Close() body, err := ioutil.ReadAll(resp.Body) if err != nil { log.Println(err) return } var res string res = string(body[:]) fmt.Println(res) }
POST请求示例
package main import ( "net/http" "strings" "fmt" "io/ioutil" ) func main() { resp, err := http.Post("http://www.baidu.com", "application/x-www-form-urlencoded", strings.NewReader("username=xxx&password=xxxx")) if err != nil { fmt.Println(err) return } defer resp.Body.Close() body, err := ioutil.ReadAll(resp.Body) if err != nil { fmt.Println(err) return } fmt.Println(string(body)) }
PostForm请求示例
package main import ( "net/http" "fmt" "io/ioutil" "net/url" ) func main() { postParam := url.Values{ "name": {"wd"}, "password": {"1234"}, } resp, err := http.PostForm("https://cn.bing.com/", postParam) if err != nil { fmt.Println(err) return } defer resp.Body.Close() body, err := ioutil.ReadAll(resp.Body) if err != nil { fmt.Println(err) return } fmt.Println(string(body)) }
以上就是golang中的网络编程和http处理流程,看完之后是否有所收获呢?如果想了解更多相关内容,欢迎关注创新互联行业资讯,感谢各位的阅读。
当前题目:golang中的网络编程和http处理流程
浏览路径:http://azwzsj.com/article/pjispc.html