在Android上如何使用OpenCV
这篇文章主要讲解了在Android上如何使用OpenCV,内容清晰明了,对此有兴趣的小伙伴可以学习一下,相信大家阅读完之后会有帮助。
创新互联专注于企业成都营销网站建设、网站重做改版、石河子网站定制设计、自适应品牌网站建设、H5页面制作、成都商城网站开发、集团公司官网建设、成都外贸网站制作、高端网站制作、响应式网页设计等建站业务,价格优惠性价比高,为石河子等各大城市提供网站开发制作服务。
一. OpenCV 介绍
OpenCV是一个基于BSD许可(开源)发行的跨平台计算机视觉库,可以运行在Linux、Windows、Android和Mac OS操作系统上。它轻量级而且高效——由一系列 C 函数和少量 C++ 类构成,同时提供了Python、Ruby、MATLAB等语言的接口,实现了图像处理和计算机视觉方面的很多通用算法。
在移动端上使用 OpenCV 可以完成一系列图像处理的工作。
二. OpenCV 在 Android 上的配置
我在项目中使用的 OpenCV 版本是 4.x。
在 Android Studio 中创建一个 Library,将官网下载的 OpenCV 导入后,就可以直接调用 OpenCV 中 Java 类的方法。
如果想调用 C++ 的类,也可以使用 CMake 创建环境,然后通过 include 文件放入指定路径。
下面是项目中使用的 CMakeLists.txt
cmake_minimum_required(VERSION 3.6.0) include_directories( ${CMAKE_SOURCE_DIR}/src/main/cpp/include ) add_library(libopencv_java4 SHARED IMPORTED) set_target_properties( libopencv_java4 PROPERTIES IMPORTED_LOCATION ${CMAKE_SOURCE_DIR}/src/main/jniLibs/libs/${ANDROID_ABI}/libopencv_java4.so) add_library(libc++_shared SHARED IMPORTED) set_target_properties( libc++_shared PROPERTIES IMPORTED_LOCATION ${CMAKE_SOURCE_DIR}/src/main/jniLibs/libs/${ANDROID_ABI}/libc++_shared.so) add_library( detect SHARED src/main/cpp/detect-lib.cpp src/main/cpp/detect-phone.cpp ) find_library( log-lib log ) target_link_libraries( detect libopencv_java4 libc++_shared jnigraphics ${log-lib} )
其中,detect-lib.cpp 和 detect-phone.cpp 是我创建的 C++ 类。打成 so 文件时,会包含这2个类。
三. 例子两则
3.1 作为二维码识别的兜底方案
在 Android 原生开发中,二维码识别有老牌的 zxing 等开源库。为何还要使用 OpenCV 呢?
因为 OpenCV 有自己的优势,借助它可以定位到二维码的位置,一般识别不到二维码的内容大多是因为找不到它的位置。要是能够找到位置,就可以快速识别二维码的内容。
这样一来,识别二维码时需要先拍一张照,从图像中找出二维码的位置。当然,还可以对图像进行预处理,以便能够更好地找到二维码的位置。
下面的代码,展示了在应用层拍完照之后,将图片的路径传到 jni 层将其转换成对应的 Mat 对象,再转换成灰度图像,然后找出二维码的位置,要是能够找到的话就识别出二维码的内容。
extern "C" JNIEXPORT jstring JNICALL Java_com_xxx_sdk_utils_DetectUtils_qrDetect(JNIEnv *env, jclass jc,jstring filePath) { const char *file_path_str = env->GetStringUTFChars(filePath, 0); string path = file_path_str; Mat src = imread(path); Mat gray, qrcode_roi; cvtColor(src, gray, COLOR_BGR2GRAY); QRCodeDetector qrcode_detector; vectorpts; string detect_info; bool det_result = qrcode_detector.detect(gray, pts); if (det_result) { detect_info = qrcode_detector.decode(gray, pts, qrcode_roi); return env->NewStringUTF(detect_info.c_str()); } else { detect_info = ""; return env->NewStringUTF(detect_info.c_str()); } }
对应的 Java 代码,方便应用层调用 jni 层的 qrDetect()
public class DetectUtils { static { System.loadLibrary("detect"); } /** * 识别二维码 * @param filePath * @return */ public static native String qrDetect(String filePath); ...... }
最后是应用层的调用
// 使用 OpenCV 进行二维码识别 val result = DetectUtils.qrDetect(filePath) L.d("opencvs识别二维码: $result")
3.2 比对图像的差异
在我们的实际开发中遇到一个应用场景:需要判断我们的手机回收机里面是否存放了物体。(手机回收机是一个触摸屏设备,可以通过 Android 系统来操作内部的硬件设备。)
我们事先拍一张回收机内没有物体的图作为基准图像,等到需要判断是否存在物体时再拍一张图片。两幅图片对比看比例,比列超过阈值则认为回收机内存在着物体。
下面的代码,展示了在应用层拍完照之后,跟基准图片进行比对,并返回结果。
extern "C" JNIEXPORT jboolean JNICALL Java_com_xxx_sdk_utils_DetectUtils_checkPhoneInMTA(JNIEnv *env, jclass jc,jstring baseImgPath,jstring filePath) { jboolean tRet = false; const char *file_path_str = env->GetStringUTFChars(filePath, 0); string path = file_path_str; Mat src = imread(path); const char *base_img_path_str = env->GetStringUTFChars(baseImgPath, 0); string basePath = base_img_path_str; Mat baseImg = imread(basePath); int result = checkPhoneInBox(baseImg,src,40,0.1); LOGI("checkPhoneInBox result = %d",result); if (result == 0) { tRet = true; } return tRet; }
两张图片真正的比对是在 checkPhoneInBox() 中完成的。其中,maxFilter() 是为了处理彩色的情况,然后使用高斯滤波进行降噪处理,再进行二值化处理,最后判断灰度差异区域占总图像的比列是否超过预先设定的阈值。
int checkPhoneInBox(cv::Mat baseImg, cv::Mat snapImg, int diffThresh, double threshRatio) { cv::Mat baseMaxImg, snapMaxImg,baseGausImg, snapGausImg; if (baseImg.empty()|| snapImg.empty()) { return -1; } try { maxFilter(baseImg, baseMaxImg); maxFilter(snapImg, snapMaxImg); } catch (...) { return -1; } cv::GaussianBlur(baseMaxImg, baseGausImg, cv::Size(5, 5),0); cv::GaussianBlur(snapMaxImg, snapGausImg, cv::Size(5, 5),0); cv::Mat diff,diffBin; cv::Mat noMax; cv::absdiff(baseGausImg, snapGausImg, diff); cv::threshold(diff, diffBin, diffThresh, 255, cv::THRESH_BINARY); float ratio = (float)cv::countNonZero(diffBin) / (long)diffBin.total(); LOGI("ratio = %f,%d,%ld",ratio,cv::countNonZero(diffBin),(long)diffBin.total()); if (ratio > threshRatio) { return 0; } else { return 1; } } int maxFilter(cv::Mat baseImg, cv::Mat &maxImg) { if (baseImg.channels() <3) { maxImg = baseImg.clone(); } else { maxImg.create(baseImg.size(), CV_8UC1); for (int r=0;r(r, c); maxTmp = (std::max)(s[0],s[1]); maxTmp = (std::max)(maxTmp,s[2]); maxImg.at (r, c) = maxTmp; } } } return 0; }
对应的 Java 代码,方便应用层调用 jni 层的 checkPhoneInMTA()
public class DetectUtils { static { System.loadLibrary("detect"); } /** * 判断MTA中是否有手机 * @param baseImageFilePath 基准的图片 * @param filePath 拍摄的图片 * @return */ public static native boolean checkPhoneInMTA(String baseImageFilePath, String filePath); ...... }
最后是应用层的调用
val result = DetectUtils.checkPhoneInMTA(Constants.OPENCV_PHOTO_PATH, it.absolutePath)
四. 总结
OpenCV 是一款功能强大的图像处理库。但是它本身体积也较大,在移动端使用至少会增加 Android Apk 包 10 M+ 的体积(主要取决于 App 要支持多少个 CPU 架构)。如果很介意的话,可以考虑自行裁剪 OpenCV,然后再进行编译。
我所在的部门隶属于中台部门,主要输出接口和 SDK。在 SDK 中使用 OpenCV 的确会给业务方造成困扰,未来也会考虑如何减少 SDK 的体积,以及把 SDK 做成模块化。
看完上述内容,是不是对在Android上如何使用OpenCV有进一步的了解,如果还想学习更多内容,欢迎关注创新互联行业资讯频道。
名称栏目:在Android上如何使用OpenCV
链接URL:http://azwzsj.com/article/pgosdp.html