如何进行Pilot-agent作用及其源码的分析
本篇文章为大家展示了如何进行Pilot-agent作用及其源码的分析,内容简明扼要并且容易理解,绝对能使你眼前一亮,通过这篇文章的详细介绍希望你能有所收获。
我们提供的服务有:成都网站建设、网站设计、微信公众号开发、网站优化、网站认证、肃宁ssl等。为上千多家企事业单位解决了网站和推广的问题。提供周到的售前咨询和贴心的售后服务,是有科学管理、有技术的肃宁网站制作公司
小编使用的Istio源码是 release 1.5。
介绍
Sidecar在注入的时候会注入istio-init和istio-proxy两个容器。Pilot-agent就是启动istio-proxy的入口。通过kubectl命令我们可以看到启动命令:
[root@localhost ~]# kubectl exec -it details-v1-6c9f8bcbcb-shltm -c istio-proxy -- ps -efww UID PID PPID C STIME TTY TIME CMD istio-p+ 1 0 0 08:52 ? 00:00:13 /usr/local/bin/pilot-agent proxy sidecar --domain default.svc.cluster.local --configPath /etc/istio/proxy --binaryPath /usr/local/bin/envoy --serviceCluster details.default --drainDuration 45s --parentShutdownDuration 1m0s --discoveryAddress istiod.istio-system.svc:15012 --zipkinAddress zipkin.istio-system:9411 --proxyLogLevel=warning --proxyComponentLogLevel=misc:error --connectTimeout 10s --proxyAdminPort 15000 --concurrency 2 --controlPlaneAuthPolicy NONE --DNSRefreshRate 300s --statusPort 15020 --trust-domain=cluster.local --controlPlaneBootstrap=false istio-p+ 18 1 0 08:52 ? 00:01:11 /usr/local/bin/envoy -c /etc/istio/proxy/envoy-rev0.json --restart-epoch 0 --drain-time-s 45 --parent-shutdown-time-s 60 --service-cluster details.default --service-node sidecar~172.20.0.14~details-v1-6c9f8bcbcb-shltm.default~default.svc.cluster.local --max-obj-name-len 189 --local-address-ip-version v4 --log-format [Envoy (Epoch 0)] [%Y-%m-%d %T.%e][%t][%l][%n] %v -l warning --component-log-level misc:error --concurrency 2
Pilot-agent除了启动istio-proxy以外还有以下能力:
生成Envoy的Bootstrap配置文件;
健康检查;
监视证书的变化,通知Envoy进程热重启,实现证书的热加载;
提供Envoy守护功能,当Envoy异常退出的时候重启Envoy;
通知Envoy优雅退出;
代码执行流程分析
proxyCmd = &cobra.Command{ Use: "proxy", Short: "Envoy proxy agent", FParseErrWhitelist: cobra.FParseErrWhitelist{ UnknownFlags: true, }, RunE: func(c *cobra.Command, args []string) error { ... // 用于设置默认配置文件的默认配置相关参数 proxyConfig := mesh.DefaultProxyConfig() // set all flags proxyConfig.CustomConfigFile = customConfigFile proxyConfig.ProxyBootstrapTemplatePath = templateFile proxyConfig.ConfigPath = configPath proxyConfig.BinaryPath = binaryPath proxyConfig.ServiceCluster = serviceCluster proxyConfig.DrainDuration = types.DurationProto(drainDuration) proxyConfig.ParentShutdownDuration = types.DurationProto(parentShutdownDuration) proxyConfig.DiscoveryAddress = discoveryAddress proxyConfig.ConnectTimeout = types.DurationProto(connectTimeout) proxyConfig.StatsdUdpAddress = statsdUDPAddress ... ctx, cancel := context.WithCancel(context.Background()) // 启动 status server if statusPort > 0 { localHostAddr := localHostIPv4 if proxyIPv6 { localHostAddr = localHostIPv6 } prober := kubeAppProberNameVar.Get() //健康探测 statusServer, err := status.NewServer(status.Config{ LocalHostAddr: localHostAddr, AdminPort: proxyAdminPort, //通过参数--statusPort 15020设置 StatusPort: statusPort, KubeAppProbers: prober, NodeType: role.Type, }) if err != nil { cancel() return err } go waitForCompletion(ctx, statusServer.Run) } ... //构造Proxy实例,包括配置,启动参数等 envoyProxy := envoy.NewProxy(envoy.ProxyConfig{ Config: proxyConfig, Node: role.ServiceNode(), LogLevel: proxyLogLevel, ComponentLogLevel: proxyComponentLogLevel, PilotSubjectAltName: pilotSAN, MixerSubjectAltName: mixerSAN, NodeIPs: role.IPAddresses, DNSRefreshRate: dnsRefreshRate, PodName: podName, PodNamespace: podNamespace, PodIP: podIP, SDSUDSPath: sdsUDSPath, SDSTokenPath: sdsTokenPath, STSPort: stsPort, ControlPlaneAuth: controlPlaneAuthEnabled, DisableReportCalls: disableInternalTelemetry, OutlierLogPath: outlierLogPath, PilotCertProvider: pilotCertProvider, }) //构造agent实例,实现了Agent接口 agent := envoy.NewAgent(envoyProxy, features.TerminationDrainDuration()) if nodeAgentSDSEnabled { tlsCertsToWatch = []string{} } //构造watcher实例 watcher := envoy.NewWatcher(tlsCertsToWatch, agent.Restart) //启动 watcher go watcher.Run(ctx) // 优雅退出 go cmd.WaitSignalFunc(cancel) //启动 agent return agent.Run(ctx) }, }
执行流程大概分成这么几步:
用于设置默认配置文件的默认配置相关参数;
启动 status server进行健康检测;
构造Proxy实例,包括配置,启动参数,并构造构造agent实例;
构造watcher实例,并启动;
开启线程监听信号,进行优雅退出;
启动 agent;
默认配置相关参数
kubectl exec -it details-v1-6c9f8bcbcb-shltm -c istio-proxy -- /usr/local/bin/pilot-agent proxy --help Envoy proxy agent Usage: pilot-agent proxy [flags] Flags: --binaryPath string Path to the proxy binary (default "/usr/local/bin/envoy") --concurrency int number of worker threads to run --configPath string Path to the generated configuration file directory (default "/etc/istio/proxy") --connectTimeout duration Connection timeout used by Envoy for supporting services (default 1s) --controlPlaneAuthPolicy string Control Plane Authentication Policy (default "NONE") --controlPlaneBootstrap Process bootstrap provided via templateFile to be used by control plane components. (default true) --customConfigFile string Path to the custom configuration file --datadogAgentAddress string Address of the Datadog Agent --disableInternalTelemetry Disable internal telemetry --discoveryAddress string Address of the discovery service exposing xDS (e.g. istio-pilot:8080) (default "istio-pilot:15010") --dnsRefreshRate string The dns_refresh_rate for bootstrap STRICT_DNS clusters (default "300s") --domain string DNS domain suffix. If not provided uses ${POD_NAMESPACE}.svc.cluster.local --drainDuration duration The time in seconds that Envoy will drain connections during a hot restart (default 45s) --envoyAccessLogService string Settings of an Envoy gRPC Access Log Service API implementation --envoyMetricsService string Settings of an Envoy gRPC Metrics Service API implementation -h, --help help for proxy --id string Proxy unique ID. If not provided uses ${POD_NAME}.${POD_NAMESPACE} from environment variables --ip string Proxy IP address. If not provided uses ${INSTANCE_IP} environment variable. --lightstepAccessToken string Access Token for LightStep Satellite pool --lightstepAddress string Address of the LightStep Satellite pool --lightstepCacertPath string Path to the trusted cacert used to authenticate the pool --lightstepSecure Should connection to the LightStep Satellite pool be secure --mixerIdentity string The identity used as the suffix for mixer's spiffe SAN. This would only be used by pilot all other proxy would get this value from pilot --outlierLogPath string The log path for outlier detection --parentShutdownDuration duration The time in seconds that Envoy will wait before shutting down the parent process during a hot restart (default 1m0s) --pilotIdentity string The identity used as the suffix for pilot's spiffe SAN --proxyAdminPort uint16 Port on which Envoy should listen for administrative commands (default 15000) --proxyComponentLogLevel string The component log level used to start the Envoy proxy (default "misc:error") --proxyLogLevel string The log level used to start the Envoy proxy (choose from {trace, debug, info, warning, error, critical, off}) (default "warning") --serviceCluster string Service cluster (default "istio-proxy") --serviceregistry string Select the platform for service registry, options are {Kubernetes, Consul, Mock} (default "Kubernetes") --statsdUdpAddress string IP Address and Port of a statsd UDP listener (e.g. 10.75.241.127:9125) --statusPort uint16 HTTP Port on which to serve pilot agent status. If zero, agent status will not be provided. --stsPort int HTTP Port on which to serve Security Token Service (STS). If zero, STS service will not be provided. --templateFile string Go template bootstrap config --tokenManagerPlugin string Token provider specific plugin name. (default "GoogleTokenExchange") --trust-domain string The domain to use for identities --zipkinAddress string Address of the Zipkin service (e.g. zipkin:9411)
从上面输出我们也可以看到proxy参数的含义以及对应的默认值。
func DefaultProxyConfig() meshconfig.ProxyConfig { return meshconfig.ProxyConfig{ ConfigPath: constants.ConfigPathDir, BinaryPath: constants.BinaryPathFilename, ServiceCluster: constants.ServiceClusterName, DrainDuration: types.DurationProto(45 * time.Second), ParentShutdownDuration: types.DurationProto(60 * time.Second), DiscoveryAddress: constants.DiscoveryPlainAddress, ConnectTimeout: types.DurationProto(1 * time.Second), StatsdUdpAddress: "", EnvoyMetricsService: &meshconfig.RemoteService{Address: ""}, EnvoyAccessLogService: &meshconfig.RemoteService{Address: ""}, ProxyAdminPort: 15000, ControlPlaneAuthPolicy: meshconfig.AuthenticationPolicy_NONE, CustomConfigFile: "", Concurrency: 0, StatNameLength: 189, Tracing: nil, } }
默认的启动参数都在DefaultProxyConfig方法中设置,默认的启动配置如下所示:
ConfigPath:/etc/istio/proxy
BinaryPath:/usr/local/bin/envoy
ServiceCluster:istio-proxy
DrainDuration:45s
ParentShutdownDuration:60s
DiscoveryAddress:istio-pilot:15010
ConnectTimeout:1s
StatsdUdpAddress:""
EnvoyMetricsService:meshconfig.RemoteService
EnvoyAccessLogService:meshconfig.RemoteService
ProxyAdminPort:15000
ControlPlaneAuthPolicy:0
CustomConfigFile:""
Concurrency:0
StatNameLength:189
Tracing:nil
status server健康检查
初始化status server:
func NewServer(config Config) (*Server, error) { s := &Server{ statusPort: config.StatusPort, ready: &ready.Probe{ LocalHostAddr: config.LocalHostAddr, AdminPort: config.AdminPort, NodeType: config.NodeType, }, } ... return s, nil }
初始化完成之后会开启一个线程调用statusServer的 Run方法:
go waitForCompletion(ctx, statusServer.Run) func (s *Server) Run(ctx context.Context) { log.Infof("Opening status port %d\n", s.statusPort) mux := http.NewServeMux() // Add the handler for ready probes. // 初始化探针的回调处理器 // /healthz/ready mux.HandleFunc(readyPath, s.handleReadyProbe) mux.HandleFunc(quitPath, s.handleQuit) //应用端口检查 mux.HandleFunc("/app-health/", s.handleAppProbe) //端口通过参数--statusPort 15020设置 l, err := net.Listen("tcp", fmt.Sprintf(":%d", s.statusPort)) if err != nil { log.Errorf("Error listening on status port: %v", err.Error()) return } ... defer l.Close() //开启监听 go func() { if err := http.Serve(l, mux); err != nil { log.Errora(err) notifyExit() } }() <-ctx.Done() log.Info("Status server has successfully terminated") }
Run方法会开启一个线程并监听15020端口,调用路径为 /healthz/ready,并通过调用handleReadyProbe处理器来调用Envoy的15000端口判断Envoy是否已经 ready 接受相对应的流量。调用过程如下:
watcher监控管理
在进行watcher监控之前会通过NewAgent生成agent实例:
func NewAgent(proxy Proxy, terminationDrainDuration time.Duration) Agent { return &agent{ proxy: proxy, //用于管理启动 Envoy 后的状态通道,用于监视 Envoy 进程的状态 statusCh: make(chan exitStatus), //活跃的Epoch 集合 activeEpochs: map[int]chan error{}, //默认5s terminationDrainDuration: terminationDrainDuration, //当前的Epoch currentEpoch: -1, } }
然后构建watcher实例:
//构造watcher实例 watcher := envoy.NewWatcher(tlsCertsToWatch, agent.Restart) type watcher struct { //证书列表 certs []string //envoy 重启函数 updates func(interface{}) } func NewWatcher(certs []string, updates func(interface{})) Watcher { return &watcher{ certs: certs, updates: updates, } }
watcher里面总共就两个参数certs是监听的证书列表,updates是envoy 重启函数,如果证书文件发生变化则调用updates来reload envoy。
启动watcher:
go watcher.Run(ctx) func (w *watcher) Run(ctx context.Context) { //启动envoy w.SendConfig() //监听证书变化 go watchCerts(ctx, w.certs, watchFileEvents, defaultMinDelay, w.SendConfig) <-ctx.Done() log.Info("Watcher has successfully terminated") }
watcher的Run方法首先会调用SendConfig启动Envoy,然后启动一个线程监听证书的变化。
func (w *watcher) SendConfig() { h := sha256.New() generateCertHash(h, w.certs) w.updates(h.Sum(nil)) }
SendConfig方法会获取当前的证书集合hash之后传入到updates方法中,updates方法就是在初始化NewWatcher的时候传入的,这里是会调用到agent的Restart方法的:
func (a *agent) Restart(config interface{}) { a.restartMutex.Lock() defer a.restartMutex.Unlock() a.mutex.Lock() //校验传入的参数是否产生了变化 if reflect.DeepEqual(a.currentConfig, config) { // Same configuration - nothing to do. a.mutex.Unlock() return } //活跃的Epoch hasActiveEpoch := len(a.activeEpochs) > 0 //获取当前的Epoch activeEpoch := a.currentEpoch //因为配置变了,所以Epoch加1 epoch := a.currentEpoch + 1 log.Infof("Received new config, creating new Envoy epoch %d", epoch) //更新当前的配置以及Epoch a.currentEpoch = epoch a.currentConfig = config // 用来做做主动退出 abortCh := make(chan error, 1) // 设置当前活跃Epoch的abortCh管道,用于优雅关闭 a.activeEpochs[a.currentEpoch] = abortCh a.mutex.Unlock() if hasActiveEpoch { a.waitUntilLive(activeEpoch) } //启动envoy,会将结果放入到statusCh管道中 go a.runWait(config, epoch, abortCh) }
Restart方法会判断传入的配置是否和当前的配置一致,如果不一致,那么设置好当前的配置后调用runWait方法启动Envoy,并将启动结果放入到statusCh管道中:
func (a *agent) runWait(config interface{}, epoch int, abortCh <-chan error) { log.Infof("Epoch %d starting", epoch) //启动envoy err := a.proxy.Run(config, epoch, abortCh) //删除当前 epoch 对应的配置文件 a.proxy.Cleanup(epoch) a.statusCh <- exitStatus{epoch: epoch, err: err} }
envoy启动流程
在上面讲了,envoy的启动会在runWait方法中进行,通过调用proxy的Run方法会通过模板文件创建/etc/istio/proxy/envoy-rev0.json配置文件,然会直接使用exec包调用envoy启动命令启动envoy。
func (e *envoy) Run(config interface{}, epoch int, abort <-chan error) error { var fname string //如果指定了模板文件,则使用用户指定的,否则则使用默认的 if len(e.Config.CustomConfigFile) > 0 { fname = e.Config.CustomConfigFile } else { out, err := bootstrap.New(bootstrap.Config{ Node: e.Node, DNSRefreshRate: e.DNSRefreshRate, Proxy: &e.Config, PilotSubjectAltName: e.PilotSubjectAltName, MixerSubjectAltName: e.MixerSubjectAltName, LocalEnv: os.Environ(), NodeIPs: e.NodeIPs, PodName: e.PodName, PodNamespace: e.PodNamespace, PodIP: e.PodIP, SDSUDSPath: e.SDSUDSPath, SDSTokenPath: e.SDSTokenPath, STSPort: e.STSPort, ControlPlaneAuth: e.ControlPlaneAuth, DisableReportCalls: e.DisableReportCalls, OutlierLogPath: e.OutlierLogPath, PilotCertProvider: e.PilotCertProvider, }).CreateFileForEpoch(epoch) if err != nil { log.Errora("Failed to generate bootstrap config: ", err) os.Exit(1) // Prevent infinite loop attempting to write the file, let k8s/systemd report } fname = out } //设置启动参数 args := e.args(fname, epoch, istioBootstrapOverrideVar.Get()) log.Infof("Envoy command: %v", args) //直接使用exec包调用envoy启动命令 cmd := exec.Command(e.Config.BinaryPath, args...) cmd.Stdout = os.Stdout cmd.Stderr = os.Stderr if err := cmd.Start(); err != nil { return err } done := make(chan error, 1) go func() { done <- cmd.Wait() }() //等待 abort channel 和 done,用于结束 Envoy 和正确返回当前的启动状态 select { //用于优雅关闭,后面会讲到 case err := <-abort: log.Warnf("Aborting epoch %d", epoch) if errKill := cmd.Process.Kill(); errKill != nil { log.Warnf("killing epoch %d caused an error %v", epoch, errKill) } return err case err := <-done: return err } }
Run方法会通过调用CreateFileForEpoch方法获取到模板文件:/var/lib/istio/envoy/envoy_bootstrap_tmpl.json,然后生成/etc/istio/proxy/envoy-rev0.json文件并返回路径;通过调用args方法来配置envoy的启动参数,然后调用exec.Command启动envoy,BinaryPath为/usr/local/bin/envoy。
最后异步获取cmd的返回结果,存入到done管道中作为方法的参数返回。返回的参数在runWait方法中会被接受到,存入到statusCh管道中。
在调用agent的run方法的时候会监听statusCh管道中的数据:
agent.Run(ctx) func (a *agent) Run(ctx context.Context) error { log.Info("Starting proxy agent") for { select { //如果 proxy-Envoy 的状态发生了变化 case status := <-a.statusCh: a.mutex.Lock() if status.err != nil { if status.err.Error() == errOutOfMemory { log.Warnf("Envoy may have been out of memory killed. Check memory usage and limits.") } log.Errorf("Epoch %d exited with error: %v", status.epoch, status.err) } else { //正常退出 log.Infof("Epoch %d exited normally", status.epoch) } //删除当前 epoch 对应的配置文件 delete(a.activeEpochs, status.epoch) active := len(a.activeEpochs) a.mutex.Unlock() if active == 0 { log.Infof("No more active epochs, terminating") return nil } ... } }
优雅退出
pilot-agent会开启一个线程调用WaitSignalFunc方法监听syscall.SIGINT、syscall.SIGTERM信号,然后调用context的cancel来实现优化关闭的效果:
func WaitSignalFunc(cancel func()) { sigs := make(chan os.Signal, 1) signal.Notify(sigs, syscall.SIGINT, syscall.SIGTERM) <-sigs cancel() _ = log.Sync() }
当context的cancel方法被调用的时候,agent的Run方法里面select监听的ctx.Done()方法也会立即返回,调用terminate方法:
func (a *agent) Run(ctx context.Context) error { for { select { //如果 proxy-Envoy 的状态发生了变化 case status := <-a.statusCh: ... case <-ctx.Done(): a.terminate() log.Info("Agent has successfully terminated") return nil } } } func (a *agent) terminate() { log.Infof("Agent draining Proxy") e := a.proxy.Drain() if e != nil { log.Warnf("Error in invoking drain listeners endpoint %v", e) } log.Infof("Graceful termination period is %v, starting...", a.terminationDrainDuration) //睡眠5s time.Sleep(a.terminationDrainDuration) log.Infof("Graceful termination period complete, terminating remaining proxies.") a.abortAll() }
terminate方法会调用sleep休眠5s,然后调用abortAll通知所有活跃Epoch进行优雅关闭。
var errAbort = errors.New("epoch aborted") func (a *agent) abortAll() { a.mutex.Lock() defer a.mutex.Unlock() for epoch, abortCh := range a.activeEpochs { log.Warnf("Aborting epoch %d...", epoch) abortCh <- errAbort } log.Warnf("Aborted all epochs") }
abortAll会获取到所有活跃的Epoch对应的abortCh管道,并插入一条数据。如果这个时候有活跃的Epoch正在等待cmd返回结果,那么会直接调用kill方法将进程杀死:
func (e *envoy) Run(config interface{}, epoch int, abort <-chan error) error { ... //等待 abort channel 和 done,用于结束 Envoy 和正确返回当前的启动状态 select { //用于优雅关闭,后面会讲到 case err := <-abort: log.Warnf("Aborting epoch %d", epoch) if errKill := cmd.Process.Kill(); errKill != nil { log.Warnf("killing epoch %d caused an error %v", epoch, errKill) } return err case err := <-done: return err } }
上述内容就是如何进行Pilot-agent作用及其源码的分析,你们学到知识或技能了吗?如果还想学到更多技能或者丰富自己的知识储备,欢迎关注创新互联行业资讯频道。
新闻名称:如何进行Pilot-agent作用及其源码的分析
网页地址:http://azwzsj.com/article/pdphjc.html