Javaspark中的bug分析
这篇文章主要介绍“Java spark中的bug分析”,在日常操作中,相信很多人在Java spark中的bug分析问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”Java spark中的bug分析”的疑惑有所帮助!接下来,请跟着小编一起来学习吧!
10年积累的成都网站建设、网站设计经验,可以快速应对客户对网站的新想法和需求。提供各种问题对应的解决方案。让选择我们的客户得到更好、更有力的网络服务。我虽然不认识你,你也不认识我。但先网站制作后付款的网站建设流程,更有西充免费网站建设让你可以放心的选择与我们合作。
在spark 中存在一个bug,该bug的详细信息如下:
None.get java.util.NoSuchElementException: None.get scala.None$.get(Option.scala:529) scala.None$.get(Option.scala:527) org.apache.spark.sql.execution.FileSourceScanExec.needsUnsafeRowConversion$lzycompute(DataSourceScanExec.scala:178) org.apache.spark.sql.execution.FileSourceScanExec.needsUnsafeRowConversion(DataSourceScanExec.scala:176) org.apache.spark.sql.execution.FileSourceScanExec.doExecute(DataSourceScanExec.scala:463) org.apache.spark.sql.execution.SparkPlan.$anonfun$execute$1(SparkPlan.scala:175) org.apache.spark.sql.execution.SparkPlan.$anonfun$executeQuery$1(SparkPlan.scala:213) org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151) org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:210) org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:171) org.apache.spark.sql.execution.InputAdapter.inputRDD(WholeStageCodegenExec.scala:525) org.apache.spark.sql.execution.InputRDDCodegen.inputRDDs(WholeStageCodegenExec.scala:453) org.apache.spark.sql.execution.InputRDDCodegen.inputRDDs$(WholeStageCodegenExec.scala:452) org.apache.spark.sql.execution.InputAdapter.inputRDDs(WholeStageCodegenExec.scala:496) org.apache.spark.sql.execution.FilterExec.inputRDDs(basicPhysicalOperators.scala:133) org.apache.spark.sql.execution.ProjectExec.inputRDDs(basicPhysicalOperators.scala:47) org.apache.spark.sql.execution.WholeStageCodegenExec.doExecute(WholeStageCodegenExec.scala:720) org.apache.spark.sql.execution.SparkPlan.$anonfun$execute$1(SparkPlan.scala:175) org.apache.spark.sql.execution.SparkPlan.$anonfun$executeQuery$1(SparkPlan.scala:213) org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151) org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:210) org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:171) org.apache.spark.sql.execution.DeserializeToObjectExec.doExecute(objects.scala:96) org.apache.spark.sql.execution.SparkPlan.$anonfun$execute$1(SparkPlan.scala:175) org.apache.spark.sql.execution.SparkPlan.$anonfun$executeQuery$1(SparkPlan.scala:213) org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151) org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:210) org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:171) org.apache.spark.sql.execution.QueryExecution.toRdd$lzycompute(QueryExecution.scala:122) org.apache.spark.sql.execution.QueryExecution.toRdd(QueryExecution.scala:121) org.apache.spark.sql.Dataset.rdd$lzycompute(Dataset.scala:3200) org.apache.spark.sql.Dataset.rdd(Dataset.scala:3198)
根据源码定位FileSourceScanExec,定位到如下位置:
SparkSession.getActiveSession.get.sessionState.conf.parquetVectorizedReaderEnabled
SparkSession.getActiveSession.get的内容如下:
/** * Returns the active SparkSession for the current thread, returned by the builder. * * @note Return None, when calling this function on executors * * @since 2.2.0 */ def getActiveSession: Option[SparkSession] = { if (TaskContext.get != null) { // Return None when running on executors. None } else { Option(activeThreadSession.get) } }
正如注释所写的一样,当在executors端获取SparkSession的时候,直接返回None。 为什么直接返回none,可以参考spark-pr-21436
当然这个问题,已经有人发现了并且提交了pr-29667,所以拿到commitID(37a660866342f2d64ad2990a5596e67cfdf044c0)直接cherry-pick就ok了,
分析一下原因: 其实该原因就是同一个jvm中,两个不同的线程同步调用,就如unit test所示:
test("SPARK-32813: Table scan should work in different thread") { val executor1 = Executors.newSingleThreadExecutor() val executor2 = Executors.newSingleThreadExecutor() var session: SparkSession = null SparkSession.cleanupAnyExistingSession() withTempDir { tempDir => try { val tablePath = tempDir.toString + "/table" val df = ThreadUtils.awaitResult(Future { session = SparkSession.builder().appName("test").master("local[*]").getOrCreate() session.createDataFrame( session.sparkContext.parallelize(Row(Array(1, 2, 3)) :: Nil), StructType(Seq( StructField("a", ArrayType(IntegerType, containsNull = false), nullable = false)))) .write.parquet(tablePath) session.read.parquet(tablePath) }(ExecutionContext.fromExecutorService(executor1)), 1.minute) ThreadUtils.awaitResult(Future { assert(df.rdd.collect()(0) === Row(Seq(1, 2, 3))) }(ExecutionContext.fromExecutorService(executor2)), 1.minute) } finally { executor1.shutdown() executor2.shutdown() session.stop() } } }
到此,关于“Java spark中的bug分析”的学习就结束了,希望能够解决大家的疑惑。理论与实践的搭配能更好的帮助大家学习,快去试试吧!若想继续学习更多相关知识,请继续关注创新互联网站,小编会继续努力为大家带来更多实用的文章!
分享题目:Javaspark中的bug分析
标题路径:http://azwzsj.com/article/jhspsd.html