如何进行Python代码的编写
这篇文章将为大家详细讲解有关如何进行Python代码的编写,文章内容质量较高,因此小编分享给大家做个参考,希望大家阅读完这篇文章后对相关知识有一定的了解。
创新互联主营萧县网站建设的网络公司,主营网站建设方案,手机APP定制开发,萧县h5重庆小程序开发搭建,萧县网站营销推广欢迎萧县等地区企业咨询
Python 调用在日常工作中还是非常实用的,只需要Python函数就可以了,如果对Python 代码不太了解,那就必须先要对下面就对进行学习,下面就对Python 代码进行系统的分析与研究。
在除去***的、有意义的语句不用而代之以晦涩的、嵌套的表达式的工作后,一个很自然的问题是:“为什么?!”我对 FP 的所有描述都是使用Python 代码做到的。但最重要的特性 -- 可能也是具体情况中最有用的特性。
它消除了副作用(或者至少对一些特殊领域,例如单一体,有一些牵制作用)。绝大部分程序错误 -- 和促使程序员求助于调试来解决的问题 -- 之所以会发生,是因为在程序执行过程期间,变量包含了意外的值。函数程序只不过根本就不为变量分配值,从而避免了这一特殊问题。
让我们看一段相当普通的命令代码。它的目的是打印出乘积大于 25 的几对数字的列表。组成各对的数字本身是从另外两个列表中挑选出的。这种操作与程序员在他们程序段中实际执行的操作差不多。
实现这一目的的命令方法如下:这个项目太小,以至于没有什么可能出错。但我们的目的可能嵌在要同时实现许多其它目的的代码中。用 "more stuff" 注释的那些部分是副作用可能导致错误发生的地方。
在这些地方中的任何一处,变量 xs 、 ys 、 bigmuls 、 x 、 y 有可能获得假设节略代码中的意外值。而且,在执行完这一段代码后,所有变量都可能具有稍后代码可能需要也可能不需要的一些值。
很明显,可以使用函数/实例形式的封装和有关作用域的考虑来防止出现这种类型的错误。而且,您总是可以在执行完变量后 del 它们。但在实际中,这些指出类型的错误非常普遍。 目标的函数方法完全消除了这些副作用错误。以下是可能的一段代码:
bigmuls = lambda xs,ys: filter( lambda (x,y):x*y > 25, combine(xs,ys)) combine = lambda xs,ys: map(None, xs*len(ys), dupelms(ys,len(xs))) dupelms = lambda lst,n: reduce( lambda s,t:s+t, map( lambda l,nn=n: [l]*n, lst)) print bigmuls((1,2,3,4),(10,15,3,22))
在示例中,我们将匿名 Python 代码与名称进行绑定,但这不是一定必要的。我们可以只嵌套定义。这样做是出于可读性目的;但也是因为 combine() 是一种随处可得的很好实用程序函数(从两个输入列表中产生所有元素对的列表)。
随后的 dupelms() 主要只是帮助 combine() 发挥作用的一种方法。即使这一函数示例比命令示例更冗长,但一旦考虑到实用程序函数可以重用,那么 bigmuls() 中的新代码本身可能比命令版本中的代码数量还要少一些。
这种函数示例真正的优势在于绝对不会有变量更改其中的任何值。稍后的代码中没有 可能的不曾预料到的副作用(较早的代码中也不会有)。很明显,它本身没有副作用并不能保证代码 正确,但即使这样,这也是个优点。不过请注意,Python 代码(与许多函数语言不同)
不能 防止名称 bigmuls 、 combine 和 dupelms 的重新绑定。如果 combine() 在程序的稍后部分中开始有其它意义,则所有努力都前功尽弃。您可以逐步建立一个 Singleton 类来包含这种类型的不可变绑定(例如 s.bigmuls 等);但本专栏并不涉及这一内容。
关于如何进行Python代码的编写就分享到这里了,希望以上内容可以对大家有一定的帮助,可以学到更多知识。如果觉得文章不错,可以把它分享出去让更多的人看到。
本文标题:如何进行Python代码的编写
文章地址:http://azwzsj.com/article/jcsoop.html