Python迭代器生成器-创新互联

  在学习python数据结构的过程中,可迭代对象,迭代器,生成器这些概念参杂在一起,难免让初学者一头雾水,今天就来捋捋这些概览。

创新互联建站致力于互联网网站建设与网站营销,提供网站建设、做网站、网站开发、seo优化、网站排名、互联网营销、小程序开发、公众号商城、等建站开发,创新互联建站网站建设策划专家,为不同类型的客户提供良好的互联网应用定制解决方案,帮助客户在新的全球化互联网环境中保持优势。
可迭代对象(iterable)

  什么是可迭代对象,通俗的讲就是可以直接通过for循环遍历的对象就可称为可迭代对象Iterable,可以使用isinstance()判断一个对象是否是Iterable对象:

>>>from collections import Iterable
>>>isinstance([], Iterable)
True
>>>isinstance({}, Iterable)
True
>>>isinstance('123', Iterable)
True
>>>isinstance(123, Iterable)
False

可迭代对象并不指某种具体的数据类型,list, dict, set, str都是迭代对象,再比如打开状态的files,sockets也是可迭代对象,可迭代对象是指代对象的一种属性,代表该对象是可迭代的。可迭代对象实现了__iter__方法,该方法返回一个迭代器对象。

迭代器(iterator)

  任何实现了__iter__和__next__方法的对象都是迭代器(python2是实现__iter__和next方法),__iter__返回迭代器自身,__next__返回容器中的下一个值,如果容器中没有更多元素了,则抛出StopIteration异常。可以使用isinstance()判断一个对象是否是Iterator对象:

>>>from collections import Iterator
>>>isinstance([], Iterator)
False
>>>isinstance({}, Iterator)
False
>>>isinstance('123', Iterator)
False
>>>isinstance((x for x in range(10)), Iterator)
True

其中(x for x in range(10))是生成器表达式,它返回的是一个生成器对象,不同于列表生成式[x for x in range(10)]返回一个list对象。生成器对象都是迭代器对象,但list, dict, str虽然是可迭代对象,但不是迭代器对象,可以使用iter()将list, dict, str等可迭代对象变成迭代器对象。

>>>isinstance(iter([]), Iterator)
True
>>>isinstance(iter('123'), Iterator)
True

python的迭代器对象表示一个数据流,可以将这个数据流看作一个有序序列,但我们并不知道序列的长度,只能不断通过调用next()函数实现按需计算下一个数据,因此迭代器的计算是惰性的,只有在需要返回下一个数据时它才计算,迭代器的这种特性可以大大减少内存的开销,迭代器对象甚至可以表示一个无限大的数据流,而让list, dict或者str存储一个无限大的数据流是不可能的。

下面我们通过迭代器来实现斐波那契数列:

from collections import Iterable
from collections import Iterator

class Fib:
    def __init__(self, max):
        self.n, self.max = 0, max
        self.a, self.b = 0, 1

    def __iter__(self):
        return self

    def __next__(self):
        if self.n < self.max:
            self.n += 1
            self.a, self.b = self.b, self.a + self.b
            return self.a
        else:
            raise StopIteration

if __name__ == '__main__':
    fib = Fib(10)
    print(isinstance(fib, Iterable)) # True
    print(isinstance(fib, Iterator)) # True
    print([e for e in fib]) # [1, 1, 2, 3, 5, 8, 13, 21, 34, 55]

  Fib既是一个可迭代对象(因为它实现了__iter__方法),又是一个迭代器(因为实现了__next__方法)。实例变量a和b用于维护迭代器内部的状态。每次调用next()方法的时候做两件事:
为下一次调用next()方法修改状态,为当前这次调用生成返回结果。

迭代器就像一个懒加载的工厂,等到有人需要的时候才给它生成值返回,没调用的时候就处于休眠状态等待下一次调用。

生成器(generator)

  生成器是一种特殊的迭代器,不过这种迭代器更加优雅。它不需要再像上面的类一样写__iter__()和__next__()方法了,只需要一个yiled关键字。

用生成器来实现斐波那契数列的例子是:

def fib(max):
    n, a, b = 0, 0, 1
    while n < max:
        n = n + 1
        a, b = b, b + a
        yield a

f = fib(10)
print(f) # 
print([e for e in f])   # [1, 1, 2, 3, 5, 8, 13, 21, 34, 55]

fib函数中的yield关键字,将该函数变成了一个生成器,当执行f=fib(10)返回的是一个生成器对象,此时函数中的代码并不会执行,只有显示或隐示地调用next的时候才会真正执行里面的代码,在每次调用next()方法时,遇到yield语句返回值并中断,再次执行时从上次返回的yield语句处继续执行。
生成器是python非常强大的特性,相比其他容器对象它更加节省内存,同时使用更少的代码,使你的代码更加的优雅,凡事以下结构都可以通过生成器重构:

def fun():
    result = []
    for ... in ...:
        result.append(x)
    return result

def fun_gen():
    for ... in ...:
        yield x
总结
  1. 可迭代对象实现了__iter__方法,该方法返回一个迭代器对象。
  2. 迭代器持有一个内部状态的字段,用于记录下次迭代返回值,它实现了__next__和__iter__方法,迭代器不会一次性把所有元素加载到内存,而是需要的时候才生成返回结果。
  3. 生成器是一种特殊的迭代器,它的返回值不是通过return而是用yield。

创新互联www.cdcxhl.cn,专业提供香港、美国云服务器,动态BGP最优骨干路由自动选择,持续稳定高效的网络助力业务部署。公司持有工信部办法的idc、isp许可证, 机房独有T级流量清洗系统配攻击溯源,准确进行流量调度,确保服务器高可用性。佳节活动现已开启,新人活动云服务器买多久送多久。


网站标题:Python迭代器生成器-创新互联
转载来于:http://azwzsj.com/article/isicj.html