HDFS中小文件的排查方式之如何分析fsimage
这篇文章主要介绍HDFS中小文件的排查方式之如何分析fsimage,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!
我们提供的服务有:网站设计、做网站、微信公众号开发、网站优化、网站认证、阿鲁科尔沁ssl等。为上千余家企事业单位解决了网站和推广的问题。提供周到的售前咨询和贴心的售后服务,是有科学管理、有技术的阿鲁科尔沁网站制作公司
问题
cloudera manager监控页面HDFS大部分机器出现类似告警"存在隐患 : DataNode 有 xxxxxx 个块。 警告阈值:500,000 块。",cm给出的建议:
这是 DataNode 运行状况检查,用于检查 DataNode 是否含有过多的块。如果 DataNode 含有过多的块,可能影响 DataNode 的性能。具有大量块数的 DataNode 将需要较大的 java 堆并且可能遇到较长时间的垃圾回收暂停。另外,大量块数可能表明存在许多小文件。不会为处理许多小文件而优化 HDFS,跨许多小文件进行操作时处理时间可能受影响。
如果只有部分 DataNode 有大量块,运行 HDFS 重新平衡命令可以通过移动 DataNode 之间的数据解决该问题。如果 HDFS 重新平衡命令将群集报告为平衡,没有修复块不平衡,则问题与存在的许多小文件有关。参阅 HDFS 文档了解解决该问题的最佳做法。如果许多小文件不是您的使用案例的关注点,则考虑禁用该运行状况测试。如果所有 DataNode 都有大量块数且该问题与小文件无关,则应添加更多 DataNode。
思路:确认hdfs集群中是否确实存在大量小文件,根据实际需要对小文件进行合并,对于历史数据及时清理归档。
排查过程
获取fsimage信息
# Usage: hdfs dfsadmin [-fetchImage] $ hdfs dfsadmin -fetchImage /data 20/10/27 17:48:04 INFO namenode.TransferFsImage: Opening connection to http://namenode1:50070/imagetransfer?getimage=1&txid=latest 20/10/27 17:48:04 INFO namenode.TransferFsImage: Image Transfer timeout configured to 60000 milliseconds 20/10/27 17:48:05 INFO namenode.TransferFsImage: Transfer took 1.14s at 357022.87 KB/s $ ll -h /data/fsimage_0000000000930647029 -rw-r----- 1 app app 397M 10月 27 17:48 /data/fsimage_0000000000930647029
格式化fsimage为可读文本
参照官网给出的《Offline Image Viewer Guide》,读取fsimage,格式化为文本,具体操作如下:
$ export HADOOP_OPTS="-Xmx32G" # increase heap size avoid oom $ hdfs oiv -i /data/fsimage_0000000000930647029 -o /data/fsimage.csv -p Delimited -delimiter "," 20/10/27 19:35:45 INFO offlineImageViewer.PBImageTextWriter: Loading string table 20/10/27 19:35:45 INFO offlineImageViewer.FSImageHandler: Loading 20 strings 20/10/27 19:35:45 INFO offlineImageViewer.PBImageTextWriter: Loading inode references 20/10/27 19:35:45 INFO offlineImageViewer.FSImageHandler: Loading inode references 20/10/27 19:35:45 INFO offlineImageViewer.FSImageHandler: Loaded 0 inode references 20/10/27 19:35:45 INFO offlineImageViewer.PBImageTextWriter: Loading directories 20/10/27 19:35:45 INFO offlineImageViewer.PBImageTextWriter: Loading directories in INode section. 20/10/27 19:35:52 INFO offlineImageViewer.PBImageTextWriter: Found 224875 directories in INode section. 20/10/27 19:35:52 INFO offlineImageViewer.PBImageTextWriter: Finished loading directories in 6598ms 20/10/27 19:35:52 INFO offlineImageViewer.PBImageTextWriter: Loading INode directory section. 20/10/27 19:35:54 INFO offlineImageViewer.PBImageTextWriter: Scanned 214127 INode directories to build namespace. 20/10/27 19:35:54 INFO offlineImageViewer.PBImageTextWriter: Finished loading INode directory section in 1784ms 20/10/27 19:35:54 INFO offlineImageViewer.PBImageTextWriter: Found 3697297 INodes in the INode section 20/10/27 19:36:55 INFO offlineImageViewer.PBImageTextWriter: Outputted 3697297 INodes. $ head /data/fsimage.csv Path,Replication,ModificationTime,AccessTime,PreferredBlockSize,BlocksCount,FileSize,NSQUOTA,DSQUOTA,Permission,UserName,GroupName /user/hive/warehouse/test.db/table1/partitionday=20200914/partitionhour=16/000151_0.lzo,3,2020-09-15 04:15,2020-09-15 04:15,134217728,1,438472,0,0,-rwxrwxrwt,user1,hive /user/hive/warehouse/test.db/table1/partitionday=20200914/partitionhour=12/000151_0.lzo,3,2020-09-15 04:15,2020-09-15 04:15,134217728,1,437489,0,0,-rwxrwxrwt,user1,hive /user/hive/warehouse/test.db/table1/partitionday=20200914/partitionhour=11/000151_0.lzo,3,2020-09-15 04:15,2020-09-15 04:15,134217728,1,437340,0,0,-rwxrwxrwt,user1,hive /user/hive/warehouse/test.db/table1/partitionday=20200914/partitionhour=09/000151_0.lzo,3,2020-09-15 04:15,2020-09-15 04:15,134217728,1,435482,0,0,-rwxrwxrwt,user1,hive /user/hive/warehouse/test.db/table1/partitionday=20200914/partitionhour=05/000151_0.lzo,3,2020-09-15 04:15,2020-09-15 04:15,134217728,1,420584,0,0,-rwxrwxrwt,user1,hive /user/hive/warehouse/test.db/table1/partitionday=20200914/partitionhour=07/000151_0.lzo,3,2020-09-15 04:15,2020-09-15 04:15,134217728,1,432046,0,0,-rwxrwxrwt,user1,hive /user/hive/warehouse/test.db/table1/partitionday=20200914/partitionhour=19/000151_0.lzo,3,2020-09-15 04:15,2020-09-15 04:15,134217728,1,436986,0,0,-rwxrwxrwt,user1,hive /user/hive/warehouse/test.db/table1/partitionday=20200914/partitionhour=14/000151_0.lzo,3,2020-09-15 04:15,2020-09-15 04:15,134217728,1,436246,0,0,-rwxrwxrwt,user1,hive /user/hive/warehouse/test.db/table1/partitionday=20200914/partitionhour=10/000193_0.lzo,3,2020-09-15 04:15,2020-09-15 04:15,134217728,1,443284,0,0,-rwxrwxrwt,user1,hive $ sed -i -e "1d" /data/fsimage.csv # 删除fsimage.csv的首行表头
建立存储fsimage的表
CREATE TABLE `fsimage_info_csv`( `path` string, `replication` int, `modificationtime` string, `accesstime` string, `preferredblocksize` bigint, `blockscount` int, `filesize` bigint, `nsquota` string, `dsquota` string, `permission` string, `username` string, `groupname` string) ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe' WITH SERDEPROPERTIES ( 'field.delim'=',', 'serialization.format'=',') STORED AS INPUTFORMAT 'org.apache.hadoop.mapred.TextInputFormat' OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat' LOCATION 'hdfs://nameservice1/user/hive/warehouse/fsimage_info_csv';
加载数据到hive表
$ hdfs dfs -put /data/fsimage.csv /user/hive/warehouse/fsimage_info_csv/
查看文件大小分布
根据fsimage文件查看一下文件大小的分布,如下:
$ hdfs oiv -p FileDistribution -i fsimage_0000000000930647029 -o fs_distribution $ cat fs_distribution Processed 0 inodes. Processed 1048576 inodes. Processed 2097152 inodes. Processed 3145728 inodes. Size NumFiles 0 209746 2097152 2360944 4194304 184952 6291456 121774 8388608 37136 // 省略中间部分 10485760 36906 12582912 51616 14680064 19209 16777216 14617 18874368 7655 20971520 5625 23068672 26746 25165824 112429 27262976 10304 29360128 12315 31457280 11966 33554432 15739 35651584 10180 115425148928 1 totalFiles = 3472422 totalDirectories = 224875 totalBlocks = 3401315 totalSpace = 122170845300822 maxFileSize = 115423398874
逐级目录统计文件数量
以查找三级目录下的小文件数量为例,如下:
SELECT dir_path , COUNT(*) AS small_file_num FROM ( SELECT relative_size, dir_path FROM ( SELECT ( CASE filesize < 4194304 WHEN TRUE THEN 'small' ELSE 'large' END) AS relative_size, concat('/',split(PATH,'\/')[1], '/',split(PATH,'\/')[2], '/' ,split(PATH,'\/')[3], '/',split(PATH,'\/')[4], '/', split( PATH,'\/')[5]) AS dir_path FROM DEFAULT.fsimage_info_csv WHERE permission LIKE 'd%') t1 WHERE relative_size='small') t2 GROUP BY dir_path ORDER BY small_file_num
相应数据脱敏后输出如下:
/data/load/201905032130 1 //省略中间部分 /user/hive/warehouse/teset.db/table1 2244 /user/hive/warehouse/teset.db/table2 2244 /user/hive/warehouse/teset.db/table3 2244 /user/hive/warehouse/teset.db/table4 2246 /user/hive/warehouse/teset.db/table5 2246 /user/hive/warehouse/teset.db/table6 2248 /user/hive/warehouse/teset.db/table7 2508 /user/hive/warehouse/teset.db/table8 3427 Time taken: 53.929 seconds, Fetched: 32947 row(s)
小文件处理
根据涉及目录,反向找到涉及程序,尝试优化避免小文件的产生
及时合并归档小文件
及时清理历史小文件
以上是“HDFS中小文件的排查方式之如何分析fsimage”这篇文章的所有内容,感谢各位的阅读!希望分享的内容对大家有帮助,更多相关知识,欢迎关注创新互联行业资讯频道!
网站标题:HDFS中小文件的排查方式之如何分析fsimage
路径分享:http://azwzsj.com/article/ijposs.html