SQL如何优化
这篇文章主要介绍SQL如何优化,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!
在康县等地区,都构建了全面的区域性战略布局,加强发展的系统性、市场前瞻性、产品创新能力,以专注、极致的服务理念,为客户提供网站制作、成都网站制作 网站设计制作按需定制开发,公司网站建设,企业网站建设,成都品牌网站建设,网络营销推广,外贸网站制作,康县网站建设费用合理。
一、存在问题
经过sql慢查询的优化,我们系统中发现了以下几种类型的问题:
1.未建索引:整张表没有建索引;2.索引未命中:有索引,但是部分查询条件下索引未命中;3.搜索了额外的非必要字段,导致回表;4.排序,聚合导致慢查询;5.相同内容多次查询数据库;6.未消限制搜索范围或者限制的搜索范围在预期之外,导致全部扫描;
二、解决方案
1.优化索引,增加或者修改当前的索引; 2.重写sql;3.利用redis缓存,减少查询次数;4.增加条件,避免非必要查询;5.增加条件,减少查询范围;
三、案例分析
(一)药材搜索接口
完整sql语句在附录,为方便阅读和脱敏,部分常用字段采用中文。
这儿主要讲一下我们拿到Sql语句后的整个分析过程,思考逻辑,然后进行调整的过程和最后解决的办法。
给大家提供一些借鉴,也希望大家能够提出更好的建议。
这个sql语句要求是根据医生搜索的拼音或者中文,进行模糊查询,找到药材,然后根据医生选择的药库,查找下面的供应商,然后根据供应商,进行药材匹配,排除掉供应商没有的药材,然后根据真名在前,别名在后,完全匹配在前,部分匹配在后,附加医生最近半年的使用习惯,把药材排序出来。最后把不同名称的同一味药聚合起来,以真名(另名)的形式展现。
1.分析sql
(1)14-8
第14排,id为8的explain结果分析:
①Explain
8,DERIVED,ssof,range,"ix_district,ix_供应商id",ix_district,8,NULL,18,Using where; Using index; Using temporary
②Sql
SELECT DISTINCT (ssof.供应商id) AS 供应商id FROM 药库供应商关系表 AS ssof WHERE ssof.药库id IN ( 1, 2, 8, 9, 10, 11, 12, 13, 14, 15, 17, 22, 24, 25, 26, 27, 31, 33) AND ssof.药方剂型id IN (1)
③索引
PRIMARY KEY (`id`), UNIQUE KEY `ix_district` ( `药库id`, `药方剂型id`, `供应商id` ) USING BTREE,KEY `ix_供应商id` (`供应商id`) USING BTREE
④分析
使用了索引,建立了临时表,这个地方索引已经完全覆盖了,但是还有回表操作。
原因是用in,这个导致了回表。如果in可以被MySQL 自动优化为等于,就不会回表。如果无法优化,就回表。
临时表是因为有distinct,所以无法避免。
同时使用in需要注意,如果里面的值数量比较多,有几万个。即使区分度高,就会导致索引失效,这种情况需要多次分批查询。
2. 12-7
(1)Explain
7,DERIVED,,ALL,NULL,NULL,NULL,NULL,18,Using temporary; Using filesort
(2)Sql
INNER JOIN (上面14-8临时表) tp ON tp.供应商id= ms.供应商id
(3)索引
无
(4)分析
对临时表操作,无索引,用了文件排序。
这一部分是对临时表和药材表进行关联操作的一部分,有文件排序是因为需要对药材表id进行group by 导致的。
1、默认情况下,mysql在使用group by之后,会产生临时表,而后进行排序(此处排序默认是快排),这会消耗的性能。
2、group by本质是先分组后排序【而不是先排序后分组】。
3、group by column 默认会按照column分组, 然后根据column升序排列; group by column order by null 则默认按照column分组,然后根据标的主键ID升序排列。
3. 13-7
(1)Explain
7,DERIVED,ms,ref,"ix_title,idx_audit,idx_mutiy",idx_mutiy,5,"tp.供应商id,const",172,NULL
(2)Sql
SELECT ms.药材表id, max(ms.audit) AS audit, max(ms.price) AS price, max(ms.market_price) AS market_price,max(ms.is_granule) AS is_granule,max(ms.is_decoct) AS is_decoct, max(ms.is_slice) AS is_slice,max(ms.is_cream) AS is_cream, max(ms.is_extract) AS is_extract,max(ms.is_cream_granule) AS is_cream_granule, max(ms.is_extract_granule) AS is_extract_granule,max(ms.is_drychip) AS is_drychip, max(ms.is_pill) AS is_pill,max(ms.is_powder) AS is_powder, max(ms.is_bolus) AS is_bolus FROM 供应商药材表 AS ms INNER JOIN ( SELECT DISTINCT (ssof.供应商id) AS 供应商id FROM 药库供应商关系表 AS ssof WHERE ssof.药库id IN ( 1, 2, 8, 9, 10, 11, 12, 13, 14, 15, 17, 22, 24, 25, 26, 27, 31, 33 ) AND ssof.药方剂型id IN (1) ) tp ON tp.供应商id= ms.供应商id WHERE ms.audit = 1 GROUP BY ms.药材表id
(3)索引
KEY `idx_mutiy` (`供应商id`, `audit`, `药材表id`)
(4)分析
命中了索引,表间连接使用了供应商id,建立索引的顺序是供应商id,where条件中audit,Group by 条件药材表id。
这部分暂时不需要更改。
4.10-6
(1)Explain
6,DERIVED,r,range,"PRIMARY,id,idx_timeline,idx_did_timeline,idx_did_isdel_statuspay_timecreate_payorderid,idx_did_statuspay_ischecked_isdel",idx_did_timeline,8,NULL,546,Using where; Using index; Using temporary; Using filesort
(2)Sql
SELECT count(*) AS total, rc.i AS m药材表id FROM 处方药材表 AS rc INNER JOIN 药方表AS r ON r.id = rc.药方表_id WHERE r.did = 40 AND r.timeline > 1576115196 AND rc.type_id in (1, 3) GROUP BY rc.i
(3)索引
KEY `idx_did_timeline` (`did`, `timeline`),
(4)分析
驱动表与被驱动表,小表驱动大表。
先了解在join连接时哪个表是驱动表,哪个表是被驱动表:
1.当使用left join时,左表是驱动表,右表是被驱动表;
2.当使用right join时,右表时驱动表,左表是驱动表;
3.当使用join时,mysql会选择数据量比较小的表作为驱动表,大表作为被驱动表;
4. in后面跟的是驱动表, exists前面的是驱动表;
5. 11-6
(1)Explain
6,DERIVED,rc,ref,"orderid_药材表,药方表_id",药方表_id,5,r.id,3,Using where
(2)Sql
同上
(3)索引
KEY `idx_药方表_id` (`药方表_id`, `type_id`) USING BTREE,
(4)分析
索引的顺序没有问题,仍旧是in 导致了回表。
6.8-5
(1)Explain
5,UNION,malias,ALL,id_tid,NULL,NULL,NULL,4978,Using where
(2)Sql
SELECT mb.id, mb.sort_id, mb.title, mb.py, mb.unit, mb.weight, mb.tid, mb.amount_max, mb.poisonous, mb.is_auxiliary, mb.is_auxiliary_free, mb.is_difficult_powder, mb.brief, mb.is_fixed_recipe, ASE WHEN malias.py = 'GC' THEN malias.title ELSE CASE WHEN malias.title = 'GC' THEN malias.title ELSE '' END END AS atitle, alias.py AS apy, CASE WHEN malias.py = 'GC' THEN 2 ELSE CASE WHEN malias.title = 'GC' THEN 2 ELSE 1 END END AS ttid FROM 药材表 AS mb LEFT JOIN 药材表 AS malias ON malias.tid = mb.id WHERE alias.title LIKE '%GC%' OR malias.py LIKE '%GC%'
(3)索引
KEY `id_tid` (`tid`) USING BTREE,
(4)分析
因为like是左右like,无法建立索引,所以只能建tid。Type是all,遍历全表以找到匹配的行,左右表大小一样,估算的找到所需的记录所需要读取的行数有4978。这个因为是like的缘故,无法优化,这个语句并没有走索引,药材表 AS mb FORCE INDEX (id_tid) 改为强制索引,读取的行数减少了700行。
7.9-5
(1)Explain
5,UNION,mb,eq_ref,"PRIMARY,ix_id",PRIMARY,4,malias.tid,1,NULL
(2)Sql
同上
(3)索引
PRIMARY KEY (`id`) USING BTREE,
(4)分析
走了主键索引,行数也少,通过。
8.7-4
(1)Explain
4,DERIVED,mb,ALL,id_tid,NULL,NULL,NULL,4978,Using where
(2)Sql
SELECT mb.id, mb.sort_id, mb.title, mb.py, mb.unit, mb.weight, mb.tid, mb.amount_max, mb.poisonous, mb.is_auxiliary, mb.is_auxiliary_free, mb.is_difficult_powder, mb.brief, mb.is_fixed_recipe, '' AS atitle, '' AS apy, CASE WHEN mb.py = 'GC' THEN 3 ELSE CASE WHEN mb.title = 'GC' THEN 3 ELSE 1 END END AS ttid FROM 药材表 AS mb WHERE mb.tid = 0 AND ( mb.title LIKE '%GC%' OR mb.py LIKE '%GC%' )
(3)索引
KEY `id_tid` (`tid`) USING BTREE,
(4)分析
tid
int(11) NOT NULL DEFAULT ‘0’ COMMENT ‘真名药品的id’,
他也是like,这个没法优化。
9.6-3
(1)Explain
3,DERIVED,,ALL,NULL,NULL,NULL,NULL,9154,Using filesort
(2)Sql
UNION ALL
(3)索引
无
(4)分析
就是把真名搜索结果和别人搜索结果合并。避免用or连接,加快速度 形成一个munion的表,初步完成药材搜索,接下去就是排序。
这一个进行了2次查询,然后用union连接,可以考虑合并为一次查询。用case when进行区分,计算出权重。
这边是一个优化点。
10.4-2
(1)Explain
2,DERIVED,,ALL,NULL,NULL,NULL,NULL,9154,NULL
(2)Sql
SELECT munion.id, munion.sort_id, case when length( trim( group_concat(munion.atitle SEPARATOR ' ') ) )> 0 then concat( munion.title, '(', trim( group_concat(munion.atitle SEPARATOR ' ') ), ')' ) else munion.title end as title, munion.py, munion.unit, munion.weight, munion.tid, munion.amount_max, munion.poisonous, munion.is_auxiliary, munion.is_auxiliary_free, munion.is_difficult_powder, munion.brief, munion.is_fixed_recipe, -- trim( group_concat( munion.atitle SEPARATOR ' ' ) ) AS atitle, ## -- trim( group_concat(munion.apy SEPARATOR ' ') ) AS apy, ## max(ttid) * 100000 + id AS ttid FROM munion
GROUP BY id -- 全部实名药材 结束## (3)索引
无
(4)分析
这里全部在临时表中搜索了。
11.5-2
(1)Explain
2,DERIVED,,ref, , ,5,m.id,10,NULL
(2)Sql
Select fields from 全部实名药材表 as m LEFT JOIN ( 个人使用药材统计表 ) p ON m.id = p.m药材表id
(3)索引
无
(4)分析
2张虚拟表left join
使用了优化器为派生表生成的索引
这边比较浪费性能,每次查询,都要对医生历史开方记录进行统计,并且统计还是几张大表计算后的结果。但是如果只是sql优化,这边暂时无法优化。
12.2-1
(1)Explain
1,PRIMARY,,ALL,NULL,NULL,NULL,NULL,3096,Using where; Using temporary; Using filesort
(2)Sql
(3)索引
(4)分析
临时表操作
13.3-1
(1)Explain
1,PRIMARY,,ref, , ,4,msu.药材表id,29,NULL
(2)Sql
(3)索引
(4)分析
临时表操作
14.null
(1)Explain
NULL,UNION RESULT,"",ALL,NULL,NULL,NULL,NULL,NULL,Using temporary
(2)Sql
(3)索引
(4)分析
临时表
(二)优化sql
上面我们只做索引的优化,遵循的原则是:
1.最左前缀匹配原则,非常重要的原则,mysql会一直向右匹配直到遇到范围查询(>、<、between、like)就停止匹配,比如a = 1 and b = 2 and c > 3 and d = 4 如果建立(a,b,c,d)顺序的索引,d是用不到索引的,如果建立(a,b,d,c)的索引则都可以用到,a,b,d的顺序可以任意调整。2.=和in可以乱序,比如a = 1 and b = 2 and c = 3 建立(a,b,c)索引可以任意顺序,mysql的查询优化器会帮你优化成索引可以识别的形式。3.尽量选择区分度高的列作为索引,区分度的公式是count(distinct col)/count(*),表示字段不重复的比例,比例越大我们扫描的记录数越少,唯一键的区分度是1,而一些状态、性别字段可能在大数据面前区分度就是0,那可能有人会问,这个比例有什么经验值吗?使用场景不同,这个值也很难确定,一般需要join的字段我们都要求是0.1以上,即平均1条扫描10条记录。4.索引列不能参与计算,保持列“干净”,比如from_unixtime(create_time) = ’2014-05-29’就不能使用到索引,原因很简单,b+树中存的都是数据表中的字段值,但进行检索时,需要把所有元素都应用函数才能比较,显然成本太大。所以语句应该写成create_time = unix_timestamp(’2014-05-29’)。5.尽量的扩展索引,不要新建索引。比如表中已经有a的索引,现在要加(a,b)的索引,那么只需要修改原来的索引即可。
查询优化神器 - explain命令
关于explain命令相信大家并不陌生,具体用法和字段含义可以参考官网explain-output,这里需要强调rows是核心指标,绝大部分rows小的语句执行一定很快(有例外,下面会讲到)。所以优化语句基本上都是在优化rows。
化基本步骤:
0.先运行看看是否真的很慢,注意设置SQL_NO_CACHE1.where条件单表查,锁定最小返回记录表。这句话的意思是把查询语句的where都应用到表中返回的记录数最小的表开始查起,单表每个字段分别查询,看哪个字段的区分度最高;2.explain查看执行计划,是否与1预期一致(从锁定记录较少的表开始查询);3.order by limit 形式的sql语句让排序的表优先查;4.了解业务方使用场景;5.加索引时参照建索引的几大原则;6.观察结果,不符合预期继续从0分析;
上面已经详细的分析了每一个步骤,根据上面的sql,去除union操作, 增加索引。可以看出,优化后虽然有所改善。但是距离我们的希望还有很大距离,但是光做sql优化,感觉也没有多少改进空间,所以决定从其他方面解决。
(三)拆分sql
由于速度还是不领人满意,尤其是个人用药情况统计,其实没必要每次都全部统计一次,再要优化,只靠修改索引应该是不行的了,所以考虑使用缓存。
接下来是修改php代码,把全部sql语句拆分,然后再组装。
(1)搜索真名,别名(缓存)
SELECT mb.id, mb.sort_id, mb.title, mb.py, mb.unit, mb.weight, mb.tid, mb.amount_max, mb.poisonous, mb.is_auxiliary, mb.is_auxiliary_free, mb.is_difficult_powder, mb.brief, mb.is_fixed_recipe, IFNULL(group_concat(malias.title),'') atitle, IFNULL(group_concat(malias.py),'') apy FROM 药材表 AS mb LEFT JOIN 药材表 AS malias ON malias.tid = mb.id WHERE mb.tid = 0 AND ( malias.title LIKE '%GC%' OR malias.py LIKE '%GC%' or mb.title LIKE '%GC%' OR mb.py LIKE '%GC%' ) group by mb.id
(2)如果命中有药材
①排序
真名在前,别名在后,完全匹配在前,部分匹配在后
//对搜索结果进行处理,增加权重
②对供应商药材搜索
SELECT ms.药材表id, max( ms.audit ) AS audit, max( ms.price ) AS price, max( ms.market_price ) AS market_price, max( ms.is_granule ) AS is_granule, max( ms.is_decoct ) AS is_decoct, max( ms.is_slice ) AS is_slice, max( ms.is_cream ) AS is_cream, max( ms.is_extract ) AS is_extract, max( ms.is_cream_granule) AS is_cream_granule, max( ms.is_extract_granule) AS is_extract_granule, max( ms.is_drychip ) AS is_drychip, max( ms.is_pill ) AS is_pill, max( ms.is_powder ) AS is_powder, max( ms.is_bolus ) AS is_bolus FROM 供应商药材表 AS ms WHERE ms.audit = 1 AND ms.供应商idin ( SELECT DISTINCT ( ssof.供应商id) AS 供应商id FROM 药库供应商关系表 AS ssof WHERE ssof.药库id IN ( 1,2,8,9,10,11,12,13,14,15,17,22,24,25,26,27,31,33 ) AND ssof.药方剂型id IN (1) ) AND ms.药材表id IN ( 78,205,206,207,208,209,334,356,397,416,584,652,988,3001,3200,3248,3521,3522,3599,3610,3624,4395,4396,4397,4398,4399,4400,4401,4402,4403,4404,4405,4406,4407,4408,5704,5705,5706,5739,5740,5741,5742,5743,6265,6266,6267,6268,6514,6515,6516,6517,6518,6742,6743 ) AND ms.is_slice = 1 GROUP BY ms.药材表id
③拿医生历史开方药材用量数据(缓存)
SELECT count( * ) AS total, rc.i AS 药材表id FROM 处方药材表 AS rc INNER JOIN 药方表AS r ON r.id = rc.药方表_id WHERE r.did = 40 AND r.timeline > 1576116927 AND rc.type_id in (1,3) GROUP BY rc.i
④ 装配及排序微调
(3)小结
运行速度,对于开方量不是特别多的医生来说,两者速度都是0.1秒左右.但是如果碰到开方量大的医生,优化后的sql速度比较稳定,能始终维持在0.1秒左右,优化前的sql速度会超过0.2秒.速度提升约一倍以上。
最后对搜索结果和未优化前的搜索结果进行比对,结果数量和顺序完全一致.本次优化结束。
四、附录:
SELECT sql_no_cache *FROM ( -- mbu start## SELECT m.*, ifnull(p.total, 0) AS total FROM ( --全部实名药材 开始 ##SELECT munion.id, munion.sort_id, case when length( trim( group_concat(munion.atitle SEPARATOR ' ') ) )> 0 then concat( munion.title, '(', trim( group_concat(munion.atitle SEPARATOR ' ') ), ')' ) else munion.title end as title, munion.py, munion.unit, munion.weight, munion.tid, munion.amount_max, munion.poisonous, munion.is_auxiliary, munion.is_auxiliary_free, munion.is_difficult_powder, munion.brief, munion.is_fixed_recipe, -- trim( group_concat( munion.atitle SEPARATOR ' ' ) ) AS atitle,## -- trim( group_concat( munion.apy SEPARATOR ' ' ) ) AS apy,## max(ttid) * 100000 + id AS ttid FROM ( -- #union start 联合查找,得到全部药材 ## ( SELECT mb.id, mb.sort_id, mb.title, mb.py, mb.unit, mb.weight, mb.tid, mb.amount_max, mb.poisonous, mb.is_auxiliary, mb.is_auxiliary_free, mb.is_difficult_powder, mb.brief, mb.is_fixed_recipe, '' AS atitle, '' AS apy, CASE WHEN mb.py = 'GC' THEN 3 ELSE CASE WHEN mb.title = 'GC' THEN 3 ELSE 1 END END AS ttid FROM 药材表 AS mb WHERE mb.tid = 0 AND ( mb.title LIKE '%GC%' OR mb.py LIKE '%GC%' ) ) --真名药材 结束 ## UNION ALL ( SELECT mb.id, mb.sort_id, mb.title, mb.py, mb.unit, mb.weight, mb.tid, mb.amount_max, mb.poisonous, mb.is_auxiliary, mb.is_auxiliary_free, mb.is_difficult_powder, mb.brief, mb.is_fixed_recipe, CASE WHEN malias.py = 'GC' THEN malias.title ELSE CASE WHEN malias.title = 'GC' THEN malias.title ELSE '' END END AS atitle, malias.py AS apy, CASE WHEN malias.py = 'GC' THEN 2 ELSE CASE WHEN malias.title = 'GC' THEN 2 ELSE 1 END END AS ttid FROM 药材表 AS mb LEFT JOIN 药材表 AS malias ON malias.tid = mb.id WHERE malias.title LIKE '%GC%' OR malias.py LIKE '%GC%' ) --其他药材结束 ## -- #union end## ) munion GROUP BY id --全部实名药材 结束 ## ) m LEFT JOIN ( --个人使用药材统计 开始 ## SELECT count(*) AS total, rc.i AS m药材表id FROM 处方药材表 AS rc INNER JOIN 药方表AS r ON r.id = rc.药方表_id WHERE r.did = 40 AND r.timeline > 1576115196 AND rc.type_id in (1, 3) GROUP BY rc.i --个人使用药材统计 结束 ## ) p ON m.id = p.m药材表id -- mbu end ## ) mbu INNER JOIN ( -- msu start 供应商药材筛选 ## SELECT ms.药材表id, max(ms.audit) AS audit, max(ms.price) AS price, max(ms.market_price) AS market_price, max(ms.is_granule) AS is_granule, max(ms.is_decoct) AS is_decoct, max(ms.is_slice) AS is_slice, max(ms.is_cream) AS is_cream, max(ms.is_extract) AS is_extract, max(ms.is_cream_granule) AS is_cream_granule, max(ms.is_extract_granule) AS is_extract_granule, max(ms.is_drychip) AS is_drychip, max(ms.is_pill) AS is_pill, max(ms.is_powder) AS is_powder, max(ms.is_bolus) AS is_bolus FROM 供应商药材表 AS ms INNER JOIN ( SELECT DISTINCT (ssof.供应商id) AS 供应商id FROM 药库供应商关系表 AS ssof WHERE ssof.药库id IN ( 1, 2, 8, 9, 10, 11, 12, 13, 14, 15, 17, 22, 24, 25, 26, 27, 31, 33 ) AND ssof.药方剂型id IN (1) ) tp ON tp.供应商id= ms.供应商id WHERE ms.audit = 1 GROUP BY ms.药材表id -- msu end ## ) msu ON mbu.id = msu.药材表idWHERE msu.药材表id > 0 AND msu.is_slice = 1order by total desc, ttid desc
以上是“SQL如何优化”这篇文章的所有内容,感谢各位的阅读!希望分享的内容对大家有帮助,更多相关知识,欢迎关注创新互联行业资讯频道!
文章题目:SQL如何优化
本文路径:http://azwzsj.com/article/iiheip.html