Storm中怎么使用DirectGrouping分组策略
这篇文章主要介绍“Storm中怎么使用Direct Grouping分组策略”,在日常操作中,相信很多人在Storm中怎么使用Direct Grouping分组策略问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”Storm中怎么使用Direct Grouping分组策略”的疑惑有所帮助!接下来,请跟着小编一起来学习吧!
创新互联公司于2013年开始,是专业互联网技术服务公司,拥有项目网站设计、网站建设网站策划,项目实施与项目整合能力。我们以让每一个梦想脱颖而出为使命,1280元隆化做网站,已为上家服务,为隆化各地企业和个人服务,联系电话:13518219792
使用 Direct Grouping 分组策略,将首字母相同的单词发送给同一个task计数
数据源spout
package com.zhch.v3; import backtype.storm.spout.SpoutOutputCollector; import backtype.storm.task.TopologyContext; import backtype.storm.topology.OutputFieldsDeclarer; import backtype.storm.topology.base.BaseRichSpout; import backtype.storm.tuple.Fields; import backtype.storm.tuple.Values; import java.io.BufferedReader; import java.io.FileReader; import java.util.Map; import java.util.UUID; import java.util.concurrent.ConcurrentHashMap; public class SentenceSpout extends BaseRichSpout { private FileReader fileReader = null; private boolean completed = false; private ConcurrentHashMappending; private SpoutOutputCollector collector; @Override public void declareOutputFields(OutputFieldsDeclarer outputFieldsDeclarer) { outputFieldsDeclarer.declare(new Fields("sentence")); } @Override public void open(Map map, TopologyContext topologyContext, SpoutOutputCollector spoutOutputCollector) { this.collector = spoutOutputCollector; this.pending = new ConcurrentHashMap (); try { this.fileReader = new FileReader(map.get("wordsFile").toString()); } catch (Exception e) { throw new RuntimeException("Error reading file [" + map.get("wordsFile") + "]"); } } @Override public void nextTuple() { if (completed) { try { Thread.sleep(1000); } catch (InterruptedException e) { } } String line; BufferedReader reader = new BufferedReader(fileReader); try { while ((line = reader.readLine()) != null) { Values values = new Values(line); UUID msgId = UUID.randomUUID(); this.pending.put(msgId, values); this.collector.emit(values, msgId); } } catch (Exception e) { throw new RuntimeException("Error reading tuple", e); } finally { completed = true; } } @Override public void ack(Object msgId) { this.pending.remove(msgId); } @Override public void fail(Object msgId) { this.collector.emit(this.pending.get(msgId), msgId); } }
实现语句分割bolt
package com.zhch.v3; import backtype.storm.task.OutputCollector; import backtype.storm.task.TopologyContext; import backtype.storm.topology.OutputFieldsDeclarer; import backtype.storm.topology.base.BaseRichBolt; import backtype.storm.tuple.Fields; import backtype.storm.tuple.Tuple; import backtype.storm.tuple.Values; import java.util.List; import java.util.Map; public class SplitSentenceBolt extends BaseRichBolt { private OutputCollector collector; private ListnumCounterTasks; @Override public void prepare(Map map, TopologyContext topologyContext, OutputCollector outputCollector) { this.collector = outputCollector; //获取下游bolt的taskId列表 this.numCounterTasks = topologyContext.getComponentTasks(WordCountTopology.COUNT_BOLT_ID); } @Override public void execute(Tuple tuple) { String sentence = tuple.getStringByField("sentence"); String[] words = sentence.split(" "); for (String word : words) { Integer taskId = this.numCounterTasks.get(this.getWordCountIndex(word)); collector.emitDirect(taskId, tuple, new Values(word)); } this.collector.ack(tuple); } public Integer getWordCountIndex(String word) { word = word.trim().toUpperCase(); if (word.isEmpty()) return 0; else { //单词首字母对下游 bolt taskId 列表长度取余 return word.charAt(0) % numCounterTasks.size(); } } @Override public void declareOutputFields(OutputFieldsDeclarer outputFieldsDeclarer) { outputFieldsDeclarer.declare(new Fields("word")); } }
实现单词计数bolt
package com.zhch.v3; import backtype.storm.task.OutputCollector; import backtype.storm.task.TopologyContext; import backtype.storm.topology.OutputFieldsDeclarer; import backtype.storm.topology.base.BaseRichBolt; import backtype.storm.tuple.Fields; import backtype.storm.tuple.Tuple; import java.io.BufferedWriter; import java.io.FileWriter; import java.util.HashMap; import java.util.Iterator; import java.util.Map; public class WordCountBolt extends BaseRichBolt { private OutputCollector collector; private HashMapcounts = null; @Override public void prepare(Map map, TopologyContext topologyContext, OutputCollector outputCollector) { this.collector = outputCollector; this.counts = new HashMap (); } @Override public void execute(Tuple tuple) { String word = tuple.getStringByField("word"); Long count = this.counts.get(word); if (count == null) { count = 0L; } count++; this.counts.put(word, count); BufferedWriter writer = null; try { writer = new BufferedWriter(new FileWriter("/home/grid/stormData/result.txt")); Iterator keys = this.counts.keySet().iterator(); while (keys.hasNext()) { String w = keys.next(); Long c = this.counts.get(w); writer.write(w + " : " + c); writer.newLine(); writer.flush(); } } catch (Exception e) { e.printStackTrace(); } finally { if (writer != null) { try { writer.close(); } catch (Exception e) { e.printStackTrace(); } writer = null; } } this.collector.ack(tuple); } @Override public void declareOutputFields(OutputFieldsDeclarer outputFieldsDeclarer) { outputFieldsDeclarer.declare(new Fields("word", "count")); } }
实现单词计数topology
package com.zhch.v3; import backtype.storm.Config; import backtype.storm.LocalCluster; import backtype.storm.StormSubmitter; import backtype.storm.topology.TopologyBuilder; public class WordCountTopology { public static final String SENTENCE_SPOUT_ID = "sentence-spout"; public static final String SPLIT_BOLT_ID = "split-bolt"; public static final String COUNT_BOLT_ID = "count-bolt"; public static final String TOPOLOGY_NAME = "word-count-topology-v3"; public static void main(String[] args) throws Exception { SentenceSpout spout = new SentenceSpout(); SplitSentenceBolt spiltBolt = new SplitSentenceBolt(); WordCountBolt countBolt = new WordCountBolt(); TopologyBuilder builder = new TopologyBuilder(); builder.setSpout(SENTENCE_SPOUT_ID, spout, 2); builder.setBolt(SPLIT_BOLT_ID, spiltBolt, 2).setNumTasks(4) .shuffleGrouping(SENTENCE_SPOUT_ID); builder.setBolt(COUNT_BOLT_ID, countBolt, 2) .directGrouping(SPLIT_BOLT_ID); //使用 Direct Grouping 分组策略 Config config = new Config(); config.put("wordsFile", args[0]); if (args != null && args.length > 1) { config.setNumWorkers(2); //集群模式启动 StormSubmitter.submitTopology(args[1], config, builder.createTopology()); } else { LocalCluster cluster = new LocalCluster(); cluster.submitTopology(TOPOLOGY_NAME, config, builder.createTopology()); try { Thread.sleep(5 * 1000); } catch (InterruptedException e) { } cluster.killTopology(TOPOLOGY_NAME); cluster.shutdown(); } } }
提交到Storm集群
storm jar Storm02-1.0-SNAPSHOT.jar com.zhch.v3.WordCountTopology /home/grid/stormData/input.txt word-count-topology-v3
运行结果:
[grid@hadoop5 stormData]$ cat result.txt second : 1 can : 1 set : 1 simple : 1 use : 2 unbounded : 1 used : 1 It : 1 Storm : 4 online : 1 cases: : 1 open : 1 Apache : 1 of : 2 over : 1 more : 1 clocked : 1 easy : 2 scalable : 1 any : 1 guarantees : 1 ETL : 1 million : 1 continuous : 1 is : 6 with : 1 it : 2 makes : 1 your : 1 a : 4 at : 1 machine : 1 analytics : 1 up : 1 and : 5 many : 1 system : 1 source : 1 what : 1 operate : 1 will : 1 computation : 2 streams : 1 [grid@hadoop6 stormData]$ cat result.txt to : 3 for : 2 data : 2 distributed : 2 has : 1 free : 1 programming : 1 reliably : 1 fast: : 1 processing : 2 be : 2 Hadoop : 1 did : 1 fun : 1 learning : 1 torm : 1 process : 1 RPC : 1 node : 1 processed : 2 per : 2 realtime : 3 benchmark : 1 batch : 1 doing : 1 lot : 1 language : 1 tuples : 1 fault-tolerant : 1
到此,关于“Storm中怎么使用Direct Grouping分组策略”的学习就结束了,希望能够解决大家的疑惑。理论与实践的搭配能更好的帮助大家学习,快去试试吧!若想继续学习更多相关知识,请继续关注创新互联网站,小编会继续努力为大家带来更多实用的文章!
网页题目:Storm中怎么使用DirectGrouping分组策略
链接地址:http://azwzsj.com/article/ieccjd.html