go语言异步写法,go 异步
2020-08-20:GO语言中的协程与Python中的协程的区别?
福哥答案2020-08-20:
创新互联专注于中大型企业的成都网站制作、成都网站建设和网站改版、网站营销服务,追求商业策划与数据分析、创意艺术与技术开发的融合,累计客户超过千家,服务满意度达97%。帮助广大客户顺利对接上互联网浪潮,准确优选出符合自己需要的互联网运用,我们将一直专注高端网站设计和互联网程序开发,在前进的路上,与客户一起成长!
1.golang的协程是基于gpm机制,是可以多核多线程的。Python的协程是eventloop模型(IO多路复用技术)实现,协程是严格的 1:N 关系,也就是一个线程对应了多个协程。虽然可以实现异步I/O,但是不能有效利用多核(GIL)。
2.golang用go func。python用import asyncio,async/await表达式。
评论
Golang kafka简述和操作(sarama同步异步和消费组)
一、Kafka简述
1. 为什么需要用到消息队列
异步:对比以前的串行同步方式来说,可以在同一时间做更多的事情,提高效率;
解耦:在耦合太高的场景,多个任务要对同一个数据进行操作消费的时候,会导致一个任务的处理因为另一个任务对数据的操作变得及其复杂。
缓冲:当遇到突发大流量的时候,消息队列可以先把所有消息有序保存起来,避免直接作用于系统主体,系统主题始终以一个平稳的速率去消费这些消息。
2.为什么选择kafka呢?
这没有绝对的好坏,看个人需求来选择,我这里就抄了一段他人总结的的优缺点,可见原文
kafka的优点:
1.支持多个生产者和消费者2.支持broker的横向拓展3.副本集机制,实现数据冗余,保证数据不丢失4.通过topic将数据进行分类5.通过分批发送压缩数据的方式,减少数据传输开销,提高吞高量6.支持多种模式的消息7.基于磁盘实现数据的持久化8.高性能的处理信息,在大数据的情况下,可以保证亚秒级的消息延迟9.一个消费者可以支持多种topic的消息10.对CPU和内存的消耗比较小11.对网络开销也比较小12.支持跨数据中心的数据复制13.支持镜像集群
kafka的缺点:
1.由于是批量发送,所以数据达不到真正的实时2.对于mqtt协议不支持3.不支持物联网传感数据直接接入4.只能支持统一分区内消息有序,无法实现全局消息有序5.监控不完善,需要安装插件6.需要配合zookeeper进行元数据管理7.会丢失数据,并且不支持事务8.可能会重复消费数据,消息会乱序,可用保证一个固定的partition内部的消息是有序的,但是一个topic有多个partition的话,就不能保证有序了,需要zookeeper的支持,topic一般需要人工创建,部署和维护一般都比mq高
3. Golang 操作kafka
3.1. kafka的环境
网上有很多搭建kafka环境教程,这里就不再搭建,就展示一下kafka的环境,在kubernetes上进行的搭建,有需要的私我,可以发yaml文件
3.2. 第三方库
github.com/Shopify/sarama // kafka主要的库*github.com/bsm/sarama-cluster // kafka消费组
3.3. 消费者
单个消费者
funcconsumer(){varwg sync.WaitGroup consumer, err := sarama.NewConsumer([]string{"172.20.3.13:30901"},nil)iferr !=nil{ fmt.Println("Failed to start consumer: %s", err)return} partitionList, err := consumer.Partitions("test0")//获得该topic所有的分区iferr !=nil{ fmt.Println("Failed to get the list of partition:, ", err)return}forpartition :=rangepartitionList { pc, err := consumer.ConsumePartition("test0",int32(partition), sarama.OffsetNewest)iferr !=nil{ fmt.Println("Failed to start consumer for partition %d: %s\n", partition, err)return} wg.Add(1)gofunc(sarama.PartitionConsumer){//为每个分区开一个go协程去取值formsg :=rangepc.Messages() {//阻塞直到有值发送过来,然后再继续等待fmt.Printf("Partition:%d, Offset:%d, key:%s, value:%s\n", msg.Partition, msg.Offset,string(msg.Key),string(msg.Value)) }deferpc.AsyncClose() wg.Done() }(pc) } wg.Wait()}funcmain(){ consumer()}
消费组
funcconsumerCluster(){ groupID :="group-1"config := cluster.NewConfig() config.Group.Return.Notifications =trueconfig.Consumer.Offsets.CommitInterval =1* time.Second config.Consumer.Offsets.Initial = sarama.OffsetNewest//初始从最新的offset开始c, err := cluster.NewConsumer(strings.Split("172.20.3.13:30901",","),groupID, strings.Split("test0",","), config)iferr !=nil{ glog.Errorf("Failed open consumer: %v", err)return}deferc.Close()gofunc(c *cluster.Consumer){ errors := c.Errors() noti := c.Notifications()for{select{caseerr := -errors: glog.Errorln(err)case-noti: } } }(c)formsg :=rangec.Messages() { fmt.Printf("Partition:%d, Offset:%d, key:%s, value:%s\n", msg.Partition, msg.Offset,string(msg.Key),string(msg.Value)) c.MarkOffset(msg,"")//MarkOffset 并不是实时写入kafka,有可能在程序crash时丢掉未提交的offset}}funcmain(){goconsumerCluster()}
3.4. 生产者
同步生产者
packagemainimport("fmt""github.com/Shopify/sarama")funcmain(){ config := sarama.NewConfig() config.Producer.RequiredAcks = sarama.WaitForAll//赋值为-1:这意味着producer在follower副本确认接收到数据后才算一次发送完成。config.Producer.Partitioner = sarama.NewRandomPartitioner//写到随机分区中,默认设置8个分区config.Producer.Return.Successes =truemsg := sarama.ProducerMessage{} msg.Topic =`test0`msg.Value = sarama.StringEncoder("Hello World!") client, err := sarama.NewSyncProducer([]string{"172.20.3.13:30901"}, config)iferr !=nil{ fmt.Println("producer close err, ", err)return}deferclient.Close() pid, offset, err := client.SendMessage(msg)iferr !=nil{ fmt.Println("send message failed, ", err)return} fmt.Printf("分区ID:%v, offset:%v \n", pid, offset)}
异步生产者
funcasyncProducer(){ config := sarama.NewConfig() config.Producer.Return.Successes =true//必须有这个选项config.Producer.Timeout =5* time.Second p, err := sarama.NewAsyncProducer(strings.Split("172.20.3.13:30901",","), config)deferp.Close()iferr !=nil{return}//这个部分一定要写,不然通道会被堵塞gofunc(p sarama.AsyncProducer){ errors := p.Errors() success := p.Successes()for{select{caseerr := -errors:iferr !=nil{ glog.Errorln(err) }case-success: } } }(p)for{ v :="async: "+ strconv.Itoa(rand.New(rand.NewSource(time.Now().UnixNano())).Intn(10000)) fmt.Fprintln(os.Stdout, v) msg := sarama.ProducerMessage{ Topic: topics, Value: sarama.ByteEncoder(v), } p.Input() - msg time.Sleep(time.Second *1) }}funcmain(){goasyncProducer()select{ }}
3.5. 结果展示-
同步生产打印:
分区ID:0,offset:90
消费打印:
Partition:0,Offset:90,key:,value:Hello World!
异步生产打印:
async:7272async:7616async:998
消费打印:
Partition:0,Offset:91,key:,value:async:7272Partition:0,Offset:92,key:,value:async:7616Partition:0,Offset:93,key:,value:async:998
golang语言:for循环里面包含一个函数体的执行循序
go func是golang的协程,就像多线程,异步执行,所以,代码段1执行完3遍后,可能3次协成刚执行完。在代码段1中如果sleep一下应该就能给协程时间执行了。
协程与异步IO
协程,又称微线程,纤程。英文名 Coroutine 。Python对协程的支持是通过 generator 实现的。在generator中,我们不但可以通过for循环来迭代,还可以不断调用 next()函数 获取由 yield 语句返回的下一个值。但是Python的yield不但可以返回一个值,它还可以接收调用者发出的参数。yield其实是终端当前的函数,返回给调用方。python3中使用yield来实现range,节省内存,提高性能,懒加载的模式。
asyncio是Python 3.4 版本引入的 标准库 ,直接内置了对异步IO的支持。
从Python 3.5 开始引入了新的语法 async 和 await ,用来简化yield的语法:
import asyncio
import threading
async def compute(x, y):
print("Compute %s + %s ..." % (x, y))
print(threading.current_thread().name)
await asyncio.sleep(x + y)
return x + y
async def print_sum(x, y):
result = await compute(x, y)
print("%s + %s = %s" % (x, y, result))
print(threading.current_thread().name)
if __name__ == "__main__":
loop = asyncio.get_event_loop()
tasks = [print_sum(1, 2), print_sum(3, 4)]
loop.run_until_complete(asyncio.wait(tasks))
loop.close()
线程是内核进行抢占式的调度的,这样就确保了每个线程都有执行的机会。而 coroutine 运行在同一个线程中,由语言的运行时中的 EventLoop(事件循环) 来进行调度。和大多数语言一样,在 Python 中,协程的调度是非抢占式的,也就是说一个协程必须主动让出执行机会,其他协程才有机会运行。
让出执行的关键字就是 await。也就是说一个协程如果阻塞了,持续不让出 CPU,那么整个线程就卡住了,没有任何并发。
PS: 作为服务端,event loop最核心的就是IO多路复用技术,所有来自客户端的请求都由IO多路复用函数来处理;作为客户端,event loop的核心在于利用Future对象延迟执行,并使用send函数激发协程,挂起,等待服务端处理完成返回后再调用CallBack函数继续下面的流程
Go语言的协程是 语言本身特性 ,erlang和golang都是采用了CSP(Communicating Sequential Processes)模式(Python中的协程是eventloop模型),但是erlang是基于进程的消息通信,go是基于goroutine和channel的通信。
Python和Go都引入了消息调度系统模型,来避免锁的影响和进程/线程开销大的问题。
协程从本质上来说是一种用户态的线程,不需要系统来执行抢占式调度,而是在语言层面实现线程的调度 。因为协程 不再使用共享内存/数据 ,而是使用 通信 来共享内存/锁,因为在一个超级大系统里具有无数的锁,共享变量等等会使得整个系统变得无比的臃肿,而通过消息机制来交流,可以使得每个并发的单元都成为一个独立的个体,拥有自己的变量,单元之间变量并不共享,对于单元的输入输出只有消息。开发者只需要关心在一个并发单元的输入与输出的影响,而不需要再考虑类似于修改共享内存/数据对其它程序的影响。
GO语言商业案例(十八):stream
切换到新语言始终是一大步,尤其是当您的团队成员只有一个时有该语言的先前经验。现在,Stream 的主要编程语言从 Python 切换到了 Go。这篇文章将解释stream决定放弃 Python 并转向 Go 的一些原因。
Go 非常快。性能类似于 Java 或 C++。对于用例,Go 通常比 Python 快 40 倍。
对于许多应用程序来说,编程语言只是应用程序和数据库之间的粘合剂。语言本身的性能通常并不重要。然而,Stream 是一个API 提供商,为 700 家公司和超过 5 亿最终用户提供提要和聊天平台。多年来,我们一直在优化 Cassandra、PostgreSQL、Redis 等,但最终,您会达到所使用语言的极限。Python 是一门很棒的语言,但对于序列化/反序列化、排名和聚合等用例,它的性能相当缓慢。我们经常遇到性能问题,Cassandra 需要 1 毫秒来检索数据,而 Python 会花费接下来的 10 毫秒将其转换为对象。
看看我如何开始 Go 教程中的一小段 Go 代码。(这是一个很棒的教程,也是学习 Go 的一个很好的起点。)
如果您是 Go 新手,那么在阅读那个小代码片段时不会有太多让您感到惊讶的事情。它展示了多个赋值、数据结构、指针、格式和一个内置的 HTTP 库。当我第一次开始编程时,我一直喜欢使用 Python 更高级的功能。Python 允许您在编写代码时获得相当的创意。例如,您可以:
这些功能玩起来很有趣,但是,正如大多数程序员会同意的那样,在阅读别人的作品时,它们通常会使代码更难理解。Go 迫使你坚持基础。这使得阅读任何人的代码并立即了解发生了什么变得非常容易。 注意:当然,它实际上有多“容易”取决于您的用例。如果你想创建一个基本的 CRUD API,我仍然推荐 Django + DRF或 Rails。
作为一门语言,Go 试图让事情变得简单。它没有引入许多新概念。重点是创建一种非常快速且易于使用的简单语言。它唯一具有创新性的领域是 goroutine 和通道。(100% 正确CSP的概念始于 1977 年,所以这项创新更多是对旧思想的一种新方法。)Goroutines 是 Go 的轻量级线程方法,通道是 goroutines 之间通信的首选方式。Goroutines 的创建非常便宜,并且只需要几 KB 的额外内存。因为 Goroutine 非常轻量,所以有可能同时运行数百甚至数千个。您可以使用通道在 goroutine 之间进行通信。Go 运行时处理所有复杂性。goroutines 和基于通道的并发方法使得使用所有可用的 CPU 内核和处理并发 IO 变得非常容易——所有这些都不会使开发复杂化。与 Python/Java 相比,在 goroutine 上运行函数需要最少的样板代码。您只需在函数调用前加上关键字“go”:
Go 的并发方法很容易使用。与 Node 相比,这是一种有趣的方法,开发人员必须密切关注异步代码的处理方式。Go 中并发的另一个重要方面是竞争检测器。这样可以很容易地确定异步代码中是否存在任何竞争条件。
我们目前用 Go 编写的最大的微服务编译需要 4 秒。与以编译速度慢而闻名的 Java 和 C++ 等语言相比,Go 的快速编译时间是一项重大的生产力胜利。我喜欢在程序编译的时候摸鱼,但在我还记得代码应该做什么的同时完成事情会更好。
首先,让我们从显而易见的开始:与 C++ 和 Java 等旧语言相比,Go 开发人员的数量并不多。根据StackOverflow的数据, 38% 的开发人员知道 Java, 19.3% 的人知道 C++,只有 4.6% 的人知道 Go。GitHub 数据显示了类似的趋势:Go 比 Erlang、Scala 和 Elixir 等语言使用更广泛,但不如 Java 和 C++ 流行。幸运的是,Go 是一种非常简单易学的语言。它提供了您需要的基本功能,仅此而已。它引入的新概念是“延迟”声明和内置的并发管理与“goroutines”和通道。(对于纯粹主义者来说:Go 并不是第一种实现这些概念的语言,只是第一种使它们流行起来的语言。)任何加入团队的 Python、Elixir、C++、Scala 或 Java 开发人员都可以在一个月内在 Go 上发挥作用,因为它的简单性。与许多其他语言相比,我们发现组建 Go 开发人员团队更容易。如果您在博尔德和阿姆斯特丹等竞争激烈的生态系统中招聘人员,这是一项重要的优势。
对于我们这样规模的团队(约 20 人)来说,生态系统很重要。如果您必须重新发明每一个小功能,您根本无法为您的客户创造价值。Go 对我们使用的工具有很好的支持。实体库已经可用于 Redis、RabbitMQ、PostgreSQL、模板解析、任务调度、表达式解析和 RocksDB。与 Rust 或 Elixir 等其他较新的语言相比,Go 的生态系统是一个重大胜利。它当然不如 Java、Python 或 Node 之类的语言好,但它很可靠,而且对于许多基本需求,你会发现已经有高质量的包可用。
Gofmt 是一个很棒的命令行实用程序,内置在 Go 编译器中,用于格式化代码。就功能而言,它与 Python 的 autopep8 非常相似。我们大多数人并不真正喜欢争论制表符与空格。格式的一致性很重要,但实际的格式标准并不那么重要。Gofmt 通过使用一种正式的方式来格式化您的代码来避免所有这些讨论。
Go 对协议缓冲区和 gRPC 具有一流的支持。这两个工具非常适合构建需要通过 RPC 通信的微服务。您只需要编写一个清单,在其中定义可以进行的 RPC 调用以及它们采用的参数。然后从这个清单中自动生成服务器和客户端代码。生成的代码既快速又具有非常小的网络占用空间并且易于使用。从同一个清单中,您甚至可以为许多不同的语言生成客户端代码,例如 C++、Java、Python 和 Ruby。因此,内部流量不再有模棱两可的 REST 端点,您每次都必须编写几乎相同的客户端和服务器代码。.
Go 没有像 Rails 用于 Ruby、Django 用于 Python 或 Laravel 用于 PHP 那样的单一主导框架。这是 Go 社区内激烈争论的话题,因为许多人主张你不应该一开始就使用框架。我完全同意这对于某些用例是正确的。但是,如果有人想构建一个简单的 CRUD API,他们将更容易使用 Django/DJRF、Rails Laravel 或Phoenix。对于 Stream 的用例,我们更喜欢不使用框架。然而,对于许多希望提供简单 CRUD API 的新项目来说,缺乏主导框架将是一个严重的劣势。
Go 通过简单地从函数返回错误并期望调用代码来处理错误(或将其返回到调用堆栈)来处理错误。虽然这种方法有效,但很容易失去问题的范围,以确保您可以向用户提供有意义的错误。错误包通过允许您向错误添加上下文和堆栈跟踪来解决此问题。另一个问题是很容易忘记处理错误。像 errcheck 和 megacheck 这样的静态分析工具可以方便地避免犯这些错误。虽然这些变通办法效果很好,但感觉不太对劲。您希望该语言支持正确的错误处理。
Go 的包管理绝不是完美的。默认情况下,它无法指定特定版本的依赖项,也无法创建可重现的构建。Python、Node 和 Ruby 都有更好的包管理系统。但是,使用正确的工具,Go 的包管理工作得很好。您可以使用Dep来管理您的依赖项,以允许指定和固定版本。除此之外,我们还贡献了一个名为的开源工具VirtualGo,它可以更轻松地处理用 Go 编写的多个项目。
我们进行的一个有趣的实验是在 Python 中使用我们的排名提要功能并在 Go 中重写它。看看这个排名方法的例子:
Python 和 Go 代码都需要执行以下操作来支持这种排名方法:
开发 Python 版本的排名代码大约花了 3 天时间。这包括编写代码、单元测试和文档。接下来,我们花了大约 2 周的时间优化代码。其中一项优化是将分数表达式 (simple_gauss(time)*popularity) 转换为抽象语法树. 我们还实现了缓存逻辑,可以在未来的特定时间预先计算分数。相比之下,开发此代码的 Go 版本大约需要 4 天时间。性能不需要任何进一步的优化。因此,虽然 Python 的最初开发速度更快,但基于 Go 的版本最终需要我们团队的工作量大大减少。另外一个好处是,Go 代码的执行速度比我们高度优化的 Python 代码快大约 40 倍。现在,这只是我们通过切换到 Go 体验到的性能提升的一个示例。
与 Python 相比,我们系统的其他一些组件在 Go 中构建所需的时间要多得多。作为一个总体趋势,我们看到 开发 Go 代码需要更多的努力。但是,我们花更少的时间 优化 代码以提高性能。
我们评估的另一种语言是Elixir.。Elixir 建立在 Erlang 虚拟机之上。这是一种迷人的语言,我们之所以考虑它,是因为我们的一名团队成员在 Erlang 方面拥有丰富的经验。对于我们的用例,我们注意到 Go 的原始性能要好得多。Go 和 Elixir 都可以很好地服务数千个并发请求。但是,如果您查看单个请求的性能,Go 对于我们的用例来说要快得多。我们选择 Go 而不是 Elixir 的另一个原因是生态系统。对于我们需要的组件,Go 有更成熟的库,而在许多情况下,Elixir 库还没有准备好用于生产环境。培训/寻找开发人员使用 Elixir 也更加困难。这些原因使天平向 Go 倾斜。Elixir 的 Phoenix 框架看起来很棒,绝对值得一看。
Go 是一种非常高性能的语言,对并发有很好的支持。它几乎与 C++ 和 Java 等语言一样快。虽然与 Python 或 Ruby 相比,使用 Go 构建东西确实需要更多时间,但您将节省大量用于优化代码的时间。我们在Stream有一个小型开发团队,为超过 5 亿最终用户提供动力和聊天。Go 结合了 强大的生态系统 、新开发人员的 轻松入门、快速的性能 、对并发的 可靠支持和高效的编程环境 ,使其成为一个不错的选择。Stream 仍然在我们的仪表板、站点和机器学习中利用 Python 来提供个性化的订阅源. 我们不会很快与 Python 说再见,但今后所有性能密集型代码都将使用 Go 编写。我们新的聊天 API也完全用 Go 编写。
go语言的五种断言赋值语法解惑,例 _,err :=session(w.r)
书写合格的程序代码是进行程序设计的根本。只有熟练地掌握了这些内容,在以后的编程中才不会捉襟见肘。编程的语法就和我们平时说话一样,是采用大家公认的词汇以及词汇的组织规则来表达自己。
VB的程序代码由语句、常数和声明等部分组成,使用最为频繁的语句就是赋值语句。使用赋值语句可以在程序运行的过程中改变对象的属性和变量的值。它的语法很简单:
对象.属性或变量=表达式
这个语句的含义就是把等号右边表达式的值传送给等号左边的变量或者对象的属性。
希望我能帮助你解疑释惑。
网站名称:go语言异步写法,go 异步
转载来源:http://azwzsj.com/article/hsdgpj.html