快速排序go语言,快速排序go语言怎么改
golang 写个快速排序
快速排序是大多数语言内置 sort 函数的默认实现方式,简单可分为两路排序和三路排序,我在相关资料中,发现两路排序也有多种实现方式。
成都创新互联专注为客户提供全方位的互联网综合服务,包含不限于网站设计制作、成都网站设计、锡林浩特网络推广、微信小程序开发、锡林浩特网络营销、锡林浩特企业策划、锡林浩特品牌公关、搜索引擎seo、人物专访、企业宣传片、企业代运营等,从售前售中售后,我们都将竭诚为您服务,您的肯定,是我们最大的嘉奖;成都创新互联为所有大学生创业者提供锡林浩特建站搭建服务,24小时服务热线:18980820575,官方网址:www.cdcxhl.com
两路快排的逻辑
这个名词来自于 b 站的评论,这个快排思路很容易理解,非常适合入门
大体上和第一个版本差不多,但是函数更加简洁了,
这个版本是所有快速排序中,看起来比较难以理解,只有一个指针,从左到右滑动,设计非常巧妙。
这边测试了四种情况,中间值最优。
用了3个指针,表示小于,等于,大于三个部分,从而减少相等的数在其中来回交换。
由此可见快速排序是一种不稳定的排序,对于数据本身是有要求,对于 pivot 如何取也是有要求,属于经验取值了,如果对于源数据是逆序的情形,快排会退化成冒泡。
2021年03月18日22:24 更新
go面试题整理(附带部分自己的解答)
原文:【 】
如果有解答的不对的,麻烦各位在评论写出来~
go的调度原理是基于GMP模型,G代表一个goroutine,不限制数量;M=machine,代表一个线程,最大1万,所有G任务还是在M上执行;P=processor代表一个处理器,每一个允许的M都会绑定一个G,默认与逻辑CPU数量相等(通过runtime.GOMAXPROCS(runtime.NumCPU())设置)。
go调用过程:
可以能,也可以不能。
因为go存在不能使用==判断类型:map、slice,如果struct包含这些类型的字段,则不能比较。
这两种类型也不能作为map的key。
类似栈操作,后进先出。
因为go的return是一个非原子性操作,比如语句 return i ,实际上分两步进行,即将i值存入栈中作为返回值,然后执行跳转,而defer的执行时机正是跳转前,所以说defer执行时还是有机会操作返回值的。
select的case的表达式必须是一个channel类型,所有case都会被求值,求值顺序自上而下,从左至右。如果多个case可以完成,则会随机执行一个case,如果有default分支,则执行default分支语句。如果连default都没有,则select语句会一直阻塞,直到至少有一个IO操作可以进行。
break关键字可跳出select的执行。
goroutine管理、信息传递。context的意思是上下文,在线程、协程中都有这个概念,它指的是程序单元的一个运行状态、现场、快照,包含。context在多个goroutine中是并发安全的。
应用场景:
例子参考:
waitgroup
channel
len:切片的长度,访问时间复杂度为O(1),go的slice底层是对数组的引用。
cap:切片的容量,扩容是以这个值为标准。默认扩容是2倍,当达到1024的长度后,按1.25倍。
扩容:每次扩容slice底层都将先分配新的容量的内存空间,再将老的数组拷贝到新的内存空间,因为这个操作不是并发安全的。所以并发进行append操作,读到内存中的老数组可能为同一个,最终导致append的数据丢失。
共享:slice的底层是对数组的引用,因此如果两个切片引用了同一个数组片段,就会形成共享底层数组。当sliec发生内存的重新分配(如扩容)时,会对共享进行隔断。详细见下面例子:
make([]Type,len,cap)
map的底层是hash table(hmap类型),对key值进行了hash,并将结果的低八位用于确定key/value存在于哪个bucket(bmap类型)。再将高八位与bucket的tophash进行依次比较,确定是否存在。出现hash冲撞时,会通过bucket的overflow指向另一个bucket,形成一个单向链表。每个bucket存储8个键值对。
如果要实现map的顺序读取,需要使用一个slice来存储map的key并按照顺序进行排序。
利用map,如果要求并发安全,就用sync.map
要注意下set中的delete函数需要使用 delete(map) 来实现,但是这个并不会释放内存,除非value也是一个子map。当进行多次delete后,可以使用make来重建map。
使用sync.Map来管理topic,用channel来做队列。
参考:
多路归并法:
pre class="vditor-reset" placeholder="" contenteditable="true" spellcheck="false"p data-block="0"(1)假设有K路a href=""数据流/a,流内部是有序的,且流间同为升序或降序;
/pp data-block="0"(2)首先读取每个流的第一个数,如果已经EOF,pass;
/pp data-block="0"(3)将有效的k(k可能小于K)个数比较,选出最小的那路mink,输出,读取mink的下一个;
/pp data-block="0"(4)直到所有K路都EOF。
/p/pre
假设文件又1个G,内存只有256M,无法将1个G的文件全部读到内存进行排序。
第一步:
可以分为10段读取,每段读取100M的数据并排序好写入硬盘。
假设写入后的文件为A,B,C...10
第二步:
将A,B,C...10的第一个字符拿出来,对这10个字符进行排序,并将结果写入硬盘,同时记录被写入的字符的文件指针P。
第三步:
将刚刚排序好的9个字符再加上从指针P读取到的P+1位数据进行排序,并写入硬盘。
重复二、三步骤。
go文件读写参考:
保证排序前两个相等的数其在序列的前后位置顺序和排序后它们两个的前后位置顺序相同的排序叫稳定排序。
快速排序、希尔排序、堆排序、直接选择排序不是稳定的排序算法。
基数排序、冒泡排序、直接插入排序、折半插入排序、归并排序是稳定的排序算法。
参考:
head只请求页面的首部。多用来判断网页是否被修改和超链接的有效性。
get请求页面信息,并返回实例的主体。
参考:
401:未授权的访问。
403: 拒绝访问。
普通的http连接是客户端连接上服务端,然后结束请求后,由客户端或者服务端进行http连接的关闭。下次再发送请求的时候,客户端再发起一个连接,传送数据,关闭连接。这么个流程反复。但是一旦客户端发送connection:keep-alive头给服务端,且服务端也接受这个keep-alive的话,两边对上暗号,这个连接就可以复用了,一个http处理完之后,另外一个http数据直接从这个连接走了。减少新建和断开TCP连接的消耗。这个可以在Nginx设置,
这个keepalive_timout时间值意味着:一个http产生的tcp连接在传送完最后一个响应后,还需要hold住keepalive_timeout秒后,才开始关闭这个连接。
特别注意TCP层的keep alive和http不是一个意思。TCP的是指:tcp连接建立后,如果客户端很长一段时间不发送消息,当连接很久没有收到报文,tcp会主动发送一个为空的报文(侦测包)给对方,如果对方收到了并且回复了,证明对方还在。如果对方没有报文返回,重试多次之后则确认连接丢失,断开连接。
tcp的keep alive可通过
net.ipv4.tcp_keepalive_intvl = 75 // 当探测没有确认时,重新发送探测的频度。缺省是75秒。
net.ipv4.tcp_keepalive_probes = 9 //在认定连接失效之前,发送多少个TCP的keepalive探测包。缺省值是9。这个值乘以tcp_keepalive_intvl之后决定了,一个连接发送了keepalive之后可以有多少时间没有回应
net.ipv4.tcp_keepalive_time = 7200 //当keepalive起用的时候,TCP发送keepalive消息的频度。缺省是2小时。一般设置为30分钟1800
修改:
可以
tcp是面向连接的,upd是无连接状态的。
udp相比tcp没有建立连接的过程,所以更快,同时也更安全,不容易被攻击。upd没有阻塞控制,因此出现网络阻塞不会使源主机的发送效率降低。upd支持一对多,多对多等,tcp是点对点传输。tcp首部开销20字节,udp8字节。
udp使用场景:视频通话、im聊天等。
time-wait表示客户端等待服务端返回关闭信息的状态,closed_wait表示服务端得知客户端想要关闭连接,进入半关闭状态并返回一段TCP报文。
time-wait作用:
解决办法:
close_wait:
被动关闭,通常是由于客户端忘记关闭tcp连接导致。
根据业务来啊~
重要指标是cardinality(不重复数量),这个数量/总行数如果过小(趋近于0)代表索引基本没意义,比如sex性别这种。
另外查询不要使用select *,根据select的条件+where条件做组合索引,尽量实现覆盖索引,避免回表。
僵尸进程:
即子进程先于父进程退出后,子进程的PCB需要其父进程释放,但是父进程并没有释放子进程的PCB,这样的子进程就称为僵尸进程,僵尸进程实际上是一个已经死掉的进程。
孤儿进程:
一个父进程退出,而它的一个或多个子进程还在运行,那么那些子进程将成为孤儿进程。孤儿进程将被init进程(进程号为1)所收养,并由init进程对它们完成状态收集工作。
子进程死亡需要父进程来处理,那么意味着正常的进程应该是子进程先于父进程死亡。当父进程先于子进程死亡时,子进程死亡时没父进程处理,这个死亡的子进程就是孤儿进程。
但孤儿进程与僵尸进程不同的是,由于父进程已经死亡,系统会帮助父进程回收处理孤儿进程。所以孤儿进程实际上是不占用资源的,因为它终究是被系统回收了。不会像僵尸进程那样占用ID,损害运行系统。
原文链接:
产生死锁的四个必要条件:
(1) 互斥条件:一个资源每次只能被一个进程使用。
(2) 请求与保持条件:一个进程因请求资源而阻塞时,对已获得的资源保持不放。
(3) 不剥夺条件:进程已获得的资源,在末使用完之前,不能强行剥夺。
(4) 循环等待条件:若干进程之间形成一种头尾相接的循环等待资源关系。
避免方法:
端口占用:lsof -i:端口号 或者 nestat
cpu、内存占用:top
发送信号:kill -l 列出所有信号,然后用 kill [信号变化] [进程号]来执行。如kill -9 453。强制杀死453进程
git log:查看提交记录
git diff :查看变更记录
git merge:目标分支改变,而源分支保持原样。优点:保留提交历史,保留分支结构。但会有大量的merge记录
git rebase:将修改拼接到最新,复杂的记录变得优雅,单个操作变得(revert)很简单;缺点:
git revert:反做指定版本,会新生成一个版本
git reset:重置到某个版本,中间版本全部丢失
etcd、Consul
pprof
节省空间(非叶子节点不存储数据,相对b tree的优势),减少I/O次数(节省的空间全部存指针地址,让树变的矮胖),范围查找方便(相对hash的优势)。
explain
其他的见:
runtime2.go 中关于 p 的定义: 其中 runnext 指针决定了下一个要运行的 g,根据英文的注释大致意思是说:
所以当设置 runtime.GOMAXPROCS(1) 时,此时只有一个 P,创建的 g 依次加入 P, 当最后一个即 i==9 时,加入的最后 一个 g 将会继承当前主 goroutinue 的剩余时间片继续执行,所以会先输出 9, 之后再依次执行 P 队列中其它的 g。
方法一:
方法二:
[图片上传失败...(image-4ef445-1594976286098)]
方法1:to_days,返回给的日期从0开始算的天数。
方法2:data_add。向日期添加指定时间间隔
[图片上传失败...(image-b67b10-1594976286098)]
GO语言学习系列八——GO函数(func)的声明与使用
GO是编译性语言,所以函数的顺序是无关紧要的,为了方便阅读,建议入口函数 main 写在最前面,其余函数按照功能需要进行排列
GO的函数 不支持嵌套,重载和默认参数
GO的函数 支持 无需声明变量,可变长度,多返回值,匿名,闭包等
GO的函数用 func 来声明,且左大括号 { 不能另起一行
一个简单的示例:
输出为:
参数:可以传0个或多个值来供自己用
返回:通过用 return 来进行返回
输出为:
上面就是一个典型的多参数传递与多返回值
对例子的说明:
按值传递:是对某个变量进行复制,不能更改原变量的值
引用传递:相当于按指针传递,可以同时改变原来的值,并且消耗的内存会更少,只有4或8个字节的消耗
在上例中,返回值 (d int, e int, f int) { 是进行了命名,如果不想命名可以写成 (int,int,int){ ,返回的结果都是一样的,但要注意:
当返回了多个值,我们某些变量不想要,或实际用不到,我们可以使用 _ 来补位,例如上例的返回我们可以写成 d,_,f := test(a,b,c) ,我们不想要中间的返回值,可以以这种形式来舍弃掉
在参数后面以 变量 ... type 这种形式的,我们就要以判断出这是一个可变长度的参数
输出为:
在上例中, strs ...string 中, strs 的实际值是b,c,d,e,这就是一个最简单的传递可变长度的参数的例子,更多一些演变的形式,都非常类似
在GO中 defer 关键字非常重要,相当于面相对像中的析构函数,也就是在某个函数执行完成后,GO会自动这个;
如果在多层循环中函数里,都定义了 defer ,那么它的执行顺序是先进后出;
当某个函数出现严重错误时, defer 也会被调用
输出为
这是一个最简单的测试了,当然还有更复杂的调用,比如调试程序时,判断是哪个函数出了问题,完全可以根据 defer 打印出来的内容来进行判断,非常快速,这种留给你们去实现
一个函数在函数体内自己调用自己我们称之为递归函数,在做递归调用时,经常会将内存给占满,这是非常要注意的,常用的比如,快速排序就是用的递归调用
本篇重点介绍了GO函数(func)的声明与使用,下一篇将介绍GO的结构 struct
编写 快速排序的非递归算法
终于编写出来了,我写了两种,你看看:下面是代码:
/*非递归算法1
递归算法的开销很大,所以在下编了一个非递归的,算法描述如下:
A non-recursive version of quick sort using stack:
There are 2 stacks, namely one which stores the start of
a subarray and the other which stores the end of the
subarray.
STEP 1: while the subarray contains more than one element
,i.e. from Do {
SUBSTEP 1. pivot=Partion(subarray);
SUBSTEP 2. keep track of the right half of the current
subarray i.e. push (pivot+1) into stackFrom, push (to) into stackTo
SUBSTEP 3. go on to deal with the left half of
the current subarray i.e. to=pivot-1
}
STEP 2: if(neither of the stacks is empty)
Get a new subarray to deal with from the stacks.
i.e. start=pop(stackFrom); to=pop(stackTo);
STEP 3: both stacks are empty, and array has
been sorted. The program ends.
*/*/
void UnrecQuicksort(int q[],int low,int high)
{stack s1;br/stacks2;br/ s1.push(low);br/ s2.push(high);br/ int tl,th,p;br/ while(!s1.empty() !s2.empty())br/ {tl=s1.top();th=s2.top();br/ s1.pop();s2.pop();br/ if(tl=th) continue;br/ p=partition(q,tl,th);br/ s1.push(tl);s1.push(p+1);br/ s2.push(p-1);s2.push(th);br/ }
}
/*非递归算法2
要把递归算法改写成非递归算法,可引进一个栈,这个栈的大小取决于递归调用的深度,最
多不会超过n,如果每次都选较大的部分进栈,处理较短的部分,递归深度最多不超过log2n
,也就是说快速排序需要的附加存储开销为O(log2n)。
*/
void UnrecQuicksort2(int q[],int low,int high)
{int *a;br/ int top=0,i,j,p;br/ a=new int[high-low+1];br/ if(a==NULL) return;br/ a[top++]=low;br/ a[top++]=high;br/ while(top0)br/ {i=a[--top];br/ j=a[--top];br/ while(j {p=partition(q,j,i);br/ if(p-j {//先分割前部,后部进栈br/a[top++]=p+1;br/ a[top++]=i;br/ i=p-1;br/ }
else
{//先分割后部,前部进栈
a[top++]=j;
a[top++]=p-1;
j=p+1;
}
}
}
}
/*打印输出*/
void display(int p[],int len)
{for(int i=0;i cout}
/*测试*/
int _tmain(int argc, _TCHAR* argv[])
{int a[]={49,65,97,12,23,41,56,14};
quicksort(a,0,7);
//UnrecQuicksort(a,0,7);
//UnrecQuicksort2(a,0,7);
display(a,8);
return 0;
}
名称栏目:快速排序go语言,快速排序go语言怎么改
分享网址:http://azwzsj.com/article/hechhh.html