KafkaNetwork层解析,还是有人把它说清楚了
我们知道kafka是基于TCP连接的。其并没有像很多中间件使用netty作为TCP服务器。而是自己基于Java NIO写了一套。
多端合一响应式网站:PC+平板+手机,同一后台修改数据多端同步更新提交您的需求,获取网站建设与营销策划方案报价,我们会在1小时内与您联系!
几个重要类
先看下Kafka Client的网络层架构。
本文主要分析的是Network层。
Network层有两个重要的类:Selector
和KafkaChannel
。
这两个类和Java NIO层的java.nio.channels.Selector
和Channel
有点类似。
Selector
几个关键字段如下
// jdk nio中的Selector java.nio.channels.Selector nioSelector; // 记录当前Selector的所有连接信息 Mapchannels; // 已发送完成的请求 List completedSends; // 已收到的请求 List completedReceives; // 还没有完全收到的请求,对上层不可见 Map > stagedReceives; // 作为client端,调用connect连接远端时返回true的连接 Set immediatelyConnectedKeys; // 已经完成的连接 List connected; // 一次读取的最大大小 int maxReceiveSize;
从网络层来看kafka是分为client端(producer和consumer,broker作为从时也是client)和server端(broker)的。本文将分析client端是如何建立连接,以及收发数据的。server也是依靠Selector
和KafkaChannel
进行网络传输。在Network层两端的区别并不大。
建立连接
kafka的client端启动时会调用Selector#connect
(下文中如无特殊注明,均指org.apache.kafka.common.network.Selector
)方法建立连接。
public void connect(String id, InetSocketAddress address, int sendBufferSize, int receiveBufferSize) throws IOException { if (this.channels.containsKey(id)) throw new IllegalStateException("There is already a connection for id " + id); // 创建一个SocketChannel SocketChannel socketChannel = SocketChannel.open(); // 设置为非阻塞模式 socketChannel.configureBlocking(false); // 创建socket并设置相关属性 Socket socket = socketChannel.socket(); socket.setKeepAlive(true); if (sendBufferSize != Selectable.USE_DEFAULT_BUFFER_SIZE) socket.setSendBufferSize(sendBufferSize); if (receiveBufferSize != Selectable.USE_DEFAULT_BUFFER_SIZE) socket.setReceiveBufferSize(receiveBufferSize); socket.setTcpNoDelay(true); boolean connected; try { // 调用SocketChannel的connect方法,该方法会向远端发起tcp建连请求 // 因为是非阻塞的,所以该方法返回时,连接不一定已经建立好(即完成3次握手)。连接如果已经建立好则返回true,否则返回false。一般来说server和client在一台机器上,该方法可能返回true。 connected = socketChannel.connect(address); } catch (UnresolvedAddressException e) { socketChannel.close(); throw new IOException("Can't resolve address: " + address, e); } catch (IOException e) { socketChannel.close(); throw e; } // 对CONNECT事件进行注册 SelectionKey key = socketChannel.register(nioSelector, SelectionKey.OP_CONNECT); KafkaChannel channel; try { // 构造一个KafkaChannel channel = channelBuilder.buildChannel(id, key, maxReceiveSize); } catch (Exception e) { ... } // 将kafkachannel绑定到SelectionKey上 key.attach(channel); // 放入到map中,id是远端服务器的名称 this.channels.put(id, channel); // connectct为true代表该连接不会再触发CONNECT事件,所以这里要单独处理 if (connected) { // OP_CONNECT won't trigger for immediately connected channels log.debug("Immediately connected to node {}", channel.id()); // 加入到一个单独的集合中 immediatelyConnectedKeys.add(key); // 取消对该连接的CONNECT事件的监听 key.interestOps(0); } }
这里的流程和标准的NIO流程差不多,需要单独说下的是socketChannel#connect
方法返回true的场景,该方法的注释中有提到
*If this channel is in non-blocking mode then an invocation of this * method initiates a non-blocking connection operation. If the connection * is established immediately, as can happen with a local connection, then * this method returns true. Otherwise this method returns * false and the connection operation must later be completed by * invoking the {@link #finishConnect finishConnect} method.
也就是说在非阻塞模式下,对于local connection
,连接可能在马上就建立好了,那该方法会返回true,对于这种情况,不会再触发之后的connect
事件。因此kafka用一个单独的集合immediatelyConnectedKeys
将这些特殊的连接记录下来。在接下来的步骤会进行特殊处理。
之后会调用poll方法对网络事件监听:
public void poll(long timeout) throws IOException { ... // select方法是对java.nio.channels.Selector#select的一个简单封装 int readyKeys = select(timeout); ... // 如果有就绪的事件或者immediatelyConnectedKeys非空 if (readyKeys > 0 || !immediatelyConnectedKeys.isEmpty()) { // 对已就绪的事件进行处理,第2个参数为false pollSelectionKeys(this.nioSelector.selectedKeys(), false, endSelect); // 对immediatelyConnectedKeys进行处理。第2个参数为true pollSelectionKeys(immediatelyConnectedKeys, true, endSelect); } addToCompletedReceives(); ... } private void pollSelectionKeys(IterableselectionKeys, boolean isImmediatelyConnected, long currentTimeNanos) { Iterator iterator = selectionKeys.iterator(); // 遍历集合 while (iterator.hasNext()) { SelectionKey key = iterator.next(); // 移除当前元素,要不然下次poll又会处理一遍 iterator.remove(); // 得到connect时创建的KafkaChannel KafkaChannel channel = channel(key); ... try { // 如果当前处理的是immediatelyConnectedKeys集合的元素或处理的是CONNECT事件 if (isImmediatelyConnected || key.isConnectable()) { // finishconnect中会增加READ事件的监听 if (channel.finishConnect()) { this.connected.add(channel.id()); this.sensors.connectionCreated.record(); ... } else continue; } // 对于ssl的连接还有些额外的步骤 if (channel.isConnected() && !channel.ready()) channel.prepare(); // 如果是READ事件 if (channel.ready() && key.isReadable() && !hasStagedReceive(channel)) { NetworkReceive networkReceive; while ((networkReceive = channel.read()) != null) addToStagedReceives(channel, networkReceive); } // 如果是WRITE事件 if (channel.ready() && key.isWritable()) { Send send = channel.write(); if (send != null) { this.completedSends.add(send); this.sensors.recordBytesSent(channel.id(), send.size()); } } // 如果连接失效 if (!key.isValid()) close(channel, true); } catch (Exception e) { String desc = channel.socketDescription(); if (e instanceof IOException) log.debug("Connection with {} disconnected", desc, e); else log.warn("Unexpected error from {}; closing connection", desc, e); close(channel, true); } finally { maybeRecordTimePerConnection(channel, channelStartTimeNanos); } } }
因为immediatelyConnectedKeys
中的连接不会触发CONNNECT事件,所以在poll时会单独对immediatelyConnectedKeys
的channel调用finishConnect
方法。在明文传输模式下该方法会调用到PlaintextTransportLayer#finishConnect
,其实现如下:
public boolean finishConnect() throws IOException { // 返回true代表已经连接好了 boolean connected = socketChannel.finishConnect(); if (connected) // 取消监听CONNECt事件,增加READ事件的监听 key.interestOps(key.interestOps() & ~SelectionKey.OP_CONNECT | SelectionKey.OP_READ); return connected; }
关于immediatelyConnectedKeys
更详细的内容可以看看这里。
发送数据
kafka发送数据分为两个步骤:
1.调用Selector#send
将要发送的数据保存在对应的KafkaChannel
中,该方法并没有进行真正的网络IO。
// Selector#send public void send(Send send) { String connectionId = send.destination(); // 如果所在的连接正在关闭中,则加入到失败集合failedSends中 if (closingChannels.containsKey(connectionId)) this.failedSends.add(connectionId); else { KafkaChannel channel = channelOrFail(connectionId, false); try { channel.setSend(send); } catch (CancelledKeyException e) { this.failedSends.add(connectionId); close(channel, false); } } } //KafkaChannel#setSend public void setSend(Send send) { // 如果还有数据没有发送出去则报错 if (this.send != null) throw new IllegalStateException("Attempt to begin a send operation with prior send operation still in progress."); // 保存下来 this.send = send; // 添加对WRITE事件的监听 this.transportLayer.addInterestOps(SelectionKey.OP_WRITE); }
调用
Selector#poll
,在第一步中已经对该channel注册了WRITE事件的监听,所以在当channel可写时,会调用到pollSelectionKeys
将数据真正的发送出去。
private void pollSelectionKeys(IterableselectionKeys, boolean isImmediatelyConnected, long currentTimeNanos) { Iterator iterator = selectionKeys.iterator(); // 遍历集合 while (iterator.hasNext()) { SelectionKey key = iterator.next(); // 移除当前元素,要不然下次poll又会处理一遍 iterator.remove(); // 得到connect时创建的KafkaChannel KafkaChannel channel = channel(key); ... try { ... // 如果是WRITE事件 if (channel.ready() && key.isWritable()) { // 真正的网络写 Send send = channel.write(); // 一个Send对象可能会被拆成几次发送,write非空代表一个send发送完成 if (send != null) { // completedSends代表已发送完成的集合 this.completedSends.add(send); this.sensors.recordBytesSent(channel.id(), send.size()); } } ... } catch (Exception e) { ... } finally { maybeRecordTimePerConnection(channel, channelStartTimeNanos); } } }
当可写时,会调用KafkaChannel#write
方法,该方法中会进行真正的网络IO:
public Send write() throws IOException { Send result = null; if (send != null && send(send)) { result = send; send = null; } return result; } private boolean send(Send send) throws IOException { // 最终调用SocketChannel#write进行真正的写 send.writeTo(transportLayer); if (send.completed()) // 如果写完了,则移除对WRITE事件的监听 transportLayer.removeInterestOps(SelectionKey.OP_WRITE); return send.completed(); }
接收数据
如果远端有发送数据过来,那调用poll方法时,会对接收到的数据进行处理。
public void poll(long timeout) throws IOException { ... // select方法是对java.nio.channels.Selector#select的一个简单封装 int readyKeys = select(timeout); ... // 如果有就绪的事件或者immediatelyConnectedKeys非空 if (readyKeys > 0 || !immediatelyConnectedKeys.isEmpty()) { // 对已就绪的事件进行处理,第2个参数为false pollSelectionKeys(this.nioSelector.selectedKeys(), false, endSelect); // 对immediatelyConnectedKeys进行处理。第2个参数为true pollSelectionKeys(immediatelyConnectedKeys, true, endSelect); } addToCompletedReceives(); ... } private void pollSelectionKeys(IterableselectionKeys, boolean isImmediatelyConnected, long currentTimeNanos) { Iterator iterator = selectionKeys.iterator(); // 遍历集合 while (iterator.hasNext()) { SelectionKey key = iterator.next(); // 移除当前元素,要不然下次poll又会处理一遍 iterator.remove(); // 得到connect时创建的KafkaChannel KafkaChannel channel = channel(key); ... try { ... // 如果是READ事件 if (channel.ready() && key.isReadable() && !hasStagedReceive(channel)) { NetworkReceive networkReceive; // read方法会从网络中读取数据,但可能一次只能读取一个req的部分数据。只有读到一个完整的req的情况下,该方法才返回非null while ((networkReceive = channel.read()) != null) // 将读到的请求存在stagedReceives中 addToStagedReceives(channel, networkReceive); } ... } catch (Exception e) { ... } finally { maybeRecordTimePerConnection(channel, channelStartTimeNanos); } } } private void addToStagedReceives(KafkaChannel channel, NetworkReceive receive) { if (!stagedReceives.containsKey(channel)) stagedReceives.put(channel, new ArrayDeque ()); Deque deque = stagedReceives.get(channel); deque.add(receive); }
在之后的addToCompletedReceives
方法中会对该集合进行处理。
private void addToCompletedReceives() { if (!this.stagedReceives.isEmpty()) { Iterator>> iter = this.stagedReceives.entrySet().iterator(); while (iter.hasNext()) { Map.Entry > entry = iter.next(); KafkaChannel channel = entry.getKey(); // 对于client端来说该isMute返回为false,server端则依靠该方法保证消息的顺序 if (!channel.isMute()) { Deque deque = entry.getValue(); addToCompletedReceives(channel, deque); if (deque.isEmpty()) iter.remove(); } } } } private void addToCompletedReceives(KafkaChannel channel, Deque stagedDeque) { // 将每个channel的第一个NetworkReceive加入到completedReceives NetworkReceive networkReceive = stagedDeque.poll(); this.completedReceives.add(networkReceive); this.sensors.recordBytesReceived(channel.id(), networkReceive.payload().limit()); }
读出数据后,会先放到stagedReceives集合中,然后在addToCompletedReceives
方法中对于每个channel都会从stagedReceives取出一个NetworkReceive(如果有的话),放入到completedReceives中。
这样做的原因有两点:
对于SSL的连接来说,其数据内容是加密的,所以不能精准的确定本次需要读取的数据大小,只能尽可能的多读,这样会导致可能会比请求的数据读的要多。那如果该channel之后没有数据可以读,会导致多读的数据将不会被处理。
kafka需要确保一个channel上request被处理的顺序是其发送的顺序。因此对于每个channel而言,每次poll上层最多只能看见一个请求,当该请求处理完成之后,再处理其他的请求。在sever端,每次poll后都会将该channel给
mute
掉,即不再从该channel上读取数据。当处理完成之后,才将该channelunmute
,即之后可以从该socket上读取数据。而client端则是通过InFlightRequests#canSendMore
控制。
代码中关于这段逻辑的注释如下:
/* In the "Plaintext" setting, we are using socketChannel to read & write to the network. But for the "SSL" setting, * we encrypt the data before we use socketChannel to write data to the network, and decrypt before we return the responses. * This requires additional buffers to be maintained as we are reading from network, since the data on the wire is encrypted * we won't be able to read exact no.of bytes as kafka protocol requires. We read as many bytes as we can, up to SSLEngine's * application buffer size. This means we might be reading additional bytes than the requested size. * If there is no further data to read from socketChannel selector won't invoke that channel and we've have additional bytes * in the buffer. To overcome this issue we added "stagedReceives" map which contains per-channel deque. When we are * reading a channel we read as many responses as we can and store them into "stagedReceives" and pop one response during * the poll to add the completedReceives. If there are any active channels in the "stagedReceives" we set "timeout" to 0 * and pop response and add to the completedReceives. * Atmost one entry is added to "completedReceives" for a channel in each poll. This is necessary to guarantee that * requests from a channel are processed on the broker in the order they are sent. Since outstanding requests added * by SocketServer to the request queue may be processed by different request handler threads, requests on each * channel must be processed one-at-a-time to guarantee ordering. */
End
本文分析了kafka network层的实现,在阅读kafka源码时,如果不把network层搞清楚会比较迷,比如req/resp的顺序保障机制、真正进行网络IO的不是send方法等等。
分享题目:KafkaNetwork层解析,还是有人把它说清楚了
文章分享:http://azwzsj.com/article/godoop.html