tensorflow学习教程之文本分类详析-创新互联
前言
专注于为中小企业提供成都网站设计、成都网站制作服务,电脑端+手机端+微信端的三站合一,更高效的管理,为中小企业河北免费做网站提供优质的服务。我们立足成都,凝聚了一批互联网行业人才,有力地推动了成百上千企业的稳健成长,帮助中小企业通过网站建设实现规模扩充和转变。这几天caffe2发布了,支持移动端,我理解是类似单片机的物联网吧应该不是手机之类的,试想iphone7跑CNN,画面太美~
作为一个刚入坑的,甚至还没入坑的人,咱们还是老实研究下tensorflow吧,虽然它没有caffe好上手。tensorflow的特点我就不介绍了:
- 基于Python,写的很快并且具有可读性。
- 支持CPU和GPU,在多GPU系统上的运行更为顺畅。
- 代码编译效率较高。
- 社区发展的非常迅速并且活跃。
- 能够生成显示网络拓扑结构和性能的可视化图。
tensorflow(tf)运算流程:
tensorflow的运行流程主要有2步,分别是构造模型和训练。
在构造模型阶段,我们需要构建一个图(Graph)来描述我们的模型,tensoflow的强大之处也在这了,支持tensorboard:
就类似这样的图,有点像流程图,这里还推荐一个google的tensoflow游乐场,很有意思。
然后到了训练阶段,在构造模型阶段是不进行计算的,只有在tensoflow.Session.run()
时会开始计算。
文本分类
先给出代码,然后我们在一一做解释
# -*- coding: utf-8 -*- import pandas as pd import numpy as np import tensorflow as tf from collections import Counter from sklearn.datasets import fetch_20newsgroups def get_word_2_index(vocab): word2index = {} for i,word in enumerate(vocab): word2index[word] = i return word2index def get_batch(df,i,batch_size): batches = [] results = [] texts = df.data[i*batch_size : i*batch_size+batch_size] categories = df.target[i*batch_size : i*batch_size+batch_size] for text in texts: layer = np.zeros(total_words,dtype=float) for word in text.split(' '): layer[word2index[word.lower()]] += 1 batches.append(layer) for category in categories: y = np.zeros((3),dtype=float) if category == 0: y[0] = 1. elif category == 1: y[1] = 1. else: y[2] = 1. results.append(y) return np.array(batches),np.array(results) def multilayer_perceptron(input_tensor, weights, biases): #hidden层RELU函数激励 layer_1_multiplication = tf.matmul(input_tensor, weights['h2']) layer_1_addition = tf.add(layer_1_multiplication, biases['b1']) layer_1 = tf.nn.relu(layer_1_addition) layer_2_multiplication = tf.matmul(layer_1, weights['h3']) layer_2_addition = tf.add(layer_2_multiplication, biases['b2']) layer_2 = tf.nn.relu(layer_2_addition) # Output layer out_layer_multiplication = tf.matmul(layer_2, weights['out']) out_layer_addition = out_layer_multiplication + biases['out'] return out_layer_addition #main #从sklearn.datas获取数据 cate = ["comp.graphics","sci.space","rec.sport.baseball"] newsgroups_train = fetch_20newsgroups(subset='train', categories=cate) newsgroups_test = fetch_20newsgroups(subset='test', categories=cate) # 计算训练和测试数据总数 vocab = Counter() for text in newsgroups_train.data: for word in text.split(' '): vocab[word.lower()]+=1 for text in newsgroups_test.data: for word in text.split(' '): vocab[word.lower()]+=1 total_words = len(vocab) word2index = get_word_2_index(vocab) n_hidden_1 = 100 # 一层hidden层神经元个数 n_hidden_2 = 100 # 二层hidden层神经元个数 n_input = total_words n_classes = 3 # graphics, sci.space and baseball 3层输出层即将文本分为三类 #占位 input_tensor = tf.placeholder(tf.float32,[None, n_input],name="input") output_tensor = tf.placeholder(tf.float32,[None, n_classes],name="output") #正态分布存储权值和偏差值 weights = { 'h2': tf.Variable(tf.random_normal([n_input, n_hidden_1])), 'h3': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])), 'out': tf.Variable(tf.random_normal([n_hidden_2, n_classes])) } biases = { 'b1': tf.Variable(tf.random_normal([n_hidden_1])), 'b2': tf.Variable(tf.random_normal([n_hidden_2])), 'out': tf.Variable(tf.random_normal([n_classes])) } #初始化 prediction = multilayer_perceptron(input_tensor, weights, biases) # 定义 loss and optimizer 采用softmax函数 # reduce_mean计算平均误差 loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=prediction, labels=output_tensor)) optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(loss) #初始化所有变量 init = tf.global_variables_initializer() #部署 graph with tf.Session() as sess: sess.run(init) training_epochs = 100 display_step = 5 batch_size = 1000 # Training for epoch in range(training_epochs): avg_cost = 0. total_batch = int(len(newsgroups_train.data) / batch_size) for i in range(total_batch): batch_x,batch_y = get_batch(newsgroups_train,i,batch_size) c,_ = sess.run([loss,optimizer], feed_dict={input_tensor: batch_x,output_tensor:batch_y}) # 计算平均损失 avg_cost += c / total_batch # 每5次epoch展示一次loss if epoch % display_step == 0: print("Epoch:", '%d' % (epoch+1), "loss=", "{:.6f}".format(avg_cost)) print("Finished!") # Test model correct_prediction = tf.equal(tf.argmax(prediction, 1), tf.argmax(output_tensor, 1)) # 计算准确率 accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) total_test_data = len(newsgroups_test.target) batch_x_test,batch_y_test = get_batch(newsgroups_test,0,total_test_data) print("Accuracy:", accuracy.eval({input_tensor: batch_x_test, output_tensor: batch_y_test}))
另外有需要云服务器可以了解下创新互联scvps.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、高防服务器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。
新闻标题:tensorflow学习教程之文本分类详析-创新互联
链接地址:http://azwzsj.com/article/eogsj.html