python-jieba分词库
jieba 库是优秀的中文分词第三方库,中文文本需要通过分词获得单个的词语
成都创新互联主营勐海网站建设的网络公司,主营网站建设方案,成都App制作,勐海h5成都小程序开发搭建,勐海网站营销推广欢迎勐海等地区企业咨询
jieba库安装
管理员身份运行cmd窗口输入命令:pip install jieba
jieba库功能介绍
特征
- 支持三种分词模式
- 精确模式:试图将句子最精确地切开,适合文本分析
- 全模式:把句子中所有的可以成词的词语都扫描出来, 速度非常快,但是不能解决歧义
- 搜索引擎模式:在精确模式的基础上,对长词再次切分,提高召回率,适合用于搜索引擎分词
- 支持繁体分词
- 支持自定义词典
分词功能
- jieba.cut 和 jieba.lcut 方法接受两个传入参数
- 第一个参数为需要分词的字符串
- cut_all参数用来控制是否采用全模式
lcut 将返回的对象转化为 list 对象返回
- jieba.cut_for_search 和 jieba.lcut_for_search 方法接受一个参数
- 需要分词的字符串
该方法适合用于搜索引擎构建倒排索引的分词,颗粒度较细
jieba.lcut_for_search 方法返回列表类型
添加自定义词典
开发者可以指定自己自定义的词典,以便包含jieba词库里没有的词。虽然jieba有新词识别能力,但是自行添加新词可以保证更高的正确率
用法
- 使用自定义词典文件
- jieba.load_userdict(file_name) # file_name 是自定义词典的路径
- 使用jieba在程序中动态修改词典
- jieba.add_word(new_words) # new_words 是想要添加的新词
- jieba.del_word(words) # 删除words
关键词提取
- jieba.analyse.extract_tags(sentence,topK) #需要先import jieba.analyse
sentence 为待提取的文本
topK 为返回几个TF/IDF权重最大的关键词,默认是20
词性标注
- jieba.posseg.POSTokenizer(tokenizer=None) 新建自定义分词器,tokenizer参数可指定内部使用的jieba.Tokenizer 分词
jieba.posseg.dt 为默认词性标注分词器
标注句子分词后每个词的词性,采用和ictclas兼容的标记法
案例
一、精确模式
import jieba
list1 = jieba.lcut("中华人民共和国是一个伟大的国家")
print(list1)
print("精确模式:"+"/".join(list1))
二、全模式
list2 = jieba.lcut("中华人民共和国是一个伟大的国家",cut_all = True)
print(list2,end=",")
print("全模式:"+"/".join(list2))
三、搜索引擎模式
list3 = jieba.lcut_for_search("中华人民共和国是一个伟大的国家")
print(list3)
print("搜索引擎模式:"+" ".join(list3))
四、修改词典
import jieba
text = "中信建投投资公司了一款游戏,中信也投资了一个游戏公司"
word = jieba.lcut(text)
print(word)
# 添加词
jieba.add_word("中信建投")
jieba.add_word("投资公司")
word1 = jieba.lcut(text)
print(word1)
# 删除词
jieba.del_word("中信建投")
word2 = jieba.lcut(text)
print(word2)
五、词性标注
import jieba.posseg as pseg
words = pseg.cut("我爱北京天安门")
for i in words:
print(i.word,i.flag)
六、统计三国演义中人物出场的次数
三国演义文本下载
import jieba
txt = open("文件路径", "r", encoding='utf-8').read() # 打开并读取文件
words = jieba.lcut(txt) # 使用精确模式对文本进行分词
counts = {} # 通过键值对的形式存储词语及其出现的次数
for word in words:
if len(word) == 1: # 单个词语不计算在内
continue
else:
counts[word] = counts.get(word, 0) + 1 # 遍历所有词语,每出现一次其对应的值加 1
items = list(counts.items()) #将键值对转换成列表
items.sort(key=lambda x: x[1], reverse=True) # 根据词语出现的次数进行从大到小排序
for i in range(15):
word, count = items[i]
print("{0:<10}{1:>5}".format(word, count))
import jieba
excludes = {"将军","却说","荆州","二人","不可","不能","如此","如何"}
txt = open("三国演义.txt", "r", encoding='utf-8').read()
words = jieba.lcut(txt)
counts = {}
for word in words:
if len(word) == 1:
continue
elif word == "诸葛亮" or word == "孔明曰":
rword = "孔明"
elif word == "关公" or word == "云长":
rword = "关羽"
elif word == "玄德" or word == "玄德曰":
rword = "刘备"
elif word == "孟德" or word == "丞相":
rword = "曹操"
else:
rword = word
counts[rword] = counts.get(rword,0) + 1
for i in excludes:
del counts[i]
items = list(counts.items())
items.sort(key=lambda x:x[1], reverse=True)
for i in range(10):
word, count = items[i]
print ("{0:<10}{1:>5}".format(word, count))
新闻标题:python-jieba分词库
分享路径:http://azwzsj.com/article/dsojsdo.html