C++的SGI版本的STL二级空间配置器实现(基于内存池的实现方式)

C++STL中的空间配置器只有一种,是同过底层的malloc和free实现的,空间配置器中有四种方法:

创新互联建站长期为1000+客户提供的网站建设服务,团队从业经验10年,关注不同地域、不同群体,并针对不同对象提供差异化的产品和服务;打造开放共赢平台,与合作伙伴共同营造健康的互联网生态环境。为长顺企业提供专业的成都网站建设、网站制作长顺网站改版等技术服务。拥有十载丰富建站经验和众多成功案例,为您定制开发。

SGI STL中有两种空间配置器,一级allocator是与stl一致的malloc和free的方式,二级allocator是通过内存池的方式实现的。

SGI STL中的vector容器的模板中用到了空间配置器,默认用的是二级allocator。该容器底层存储对象的构造和析构是通过全局的函数模板construct和destroy实现的。这里我们着重研究allocator中的allocatedeallocate方法。

allocate:

// breaks if we make these template class members:
  enum {_ALIGN = 8};
  enum {_MAX_BYTES = 128};
  enum {_NFREELISTS = 16}; // _MAX_BYTES/_ALIGN  
/* __n must be > 0      */
	//分配大小为__n的内存
  static void* allocate(size_t __n)
  {
    void* __ret = 0;

    if (__n > (size_t) _MAX_BYTES) {//如果需要的内存块大小超过最大内存,则按照标准库的方式分配内存
      __ret = malloc_alloc::allocate(__n);//调用一级allocator
    }
    else {
      _Obj* __STL_VOLATILE* __my_free_list//是一个double*的类型,指向数组的位置,解引用之后是数组中元素的值
          = _S_free_list + _S_freelist_index(__n);//根据_S_freelist_index(__n)定位数组中chunk块的位置
        //_S_free_list就是上图中的数组
        
      // Acquire the lock here with a constructor call.
      // This ensures that it is released in exit or during stack
      // unwinding.
#     ifndef _NOTHREADS
      /*REFERENCED*/
      _Lock __lock_instance;//上锁
#     endif
      _Obj* __RESTRICT __result = *__my_free_list;//result是数组中的__Obj*
      if (__result == 0)//如果数组中的元素未初始化
        __ret = _S_refill(_S_round_up(__n));//构建链表,返回链表的地址
      else {//已经初始化
        *__my_free_list = __result -> _M_free_list_link;//指向下一个节点
        __ret = __result;//返回下一个节点的地址
      }
    }

    return __ret;
  };

指针的加法操作注意事项:

​ 指针类型占用的内存多大,其指针加一就会偏移多少字节。举个例子:char类型只占1个字节,那么char* +1就只偏移一个字节,指向下一个内存地址;int类型占4个字节,int* +1就会偏移4个字节,指向4个字节后的内存地址。

_S_refill函数:

/* Returns an object of size __n, and optionally adds to size __n free list.*/
/* We assume that __n is properly aligned.                                */
/* We hold the allocation lock.                                         */
template 
void*
__default_alloc_template<__threads, __inst>::_S_refill(size_t __n)
{
    int __nobjs = 20;
    char* __chunk = _S_chunk_alloc(__n, __nobjs);//分配起始位置的地址
    _Obj* __STL_VOLATILE* __my_free_list;
    _Obj* __result;
    _Obj* __current_obj;
    _Obj* __next_obj;
    int __i;

    if (1 == __nobjs) return(__chunk);//如果数量为1,直接返回当前块
    __my_free_list = _S_free_list + _S_freelist_index(__n);//指向数组块的位置,这里先以 __n=8 为例

    /* Build free list in chunk */
      __result = (_Obj*)__chunk;//result加一次可以跳到下个节点
      *__my_free_list = __next_obj = (_Obj*)(__chunk + __n);//使数组中的第一个元素指向第二个chunk
      for (__i = 1; ; __i++) {
        __current_obj = __next_obj;
        __next_obj = (_Obj*)((char*)__next_obj + __n);//指向下一个节点
        if (__nobjs - 1 == __i) {//到链表最后节点
            __current_obj -> _M_free_list_link = 0;//使next节点等于nullptr表示最后一个节点
            break;
        } else {
            __current_obj -> _M_free_list_link = __next_obj;
        }
      }
    return(__result);//返回链表首节点地址
}

_S_chunk_alloc(size_t __size, int& __nobjs):

/* We allocate memory in large chunks in order to avoid fragmenting     */
/* the malloc heap too much.                                            */
/* We assume that size is properly aligned.                             */
/* We hold the allocation lock.                                         */
template 
char*
__default_alloc_template<__threads, __inst>::_S_chunk_alloc(size_t __size, 
                                                            int& __nobjs)
{//还是以nobjs为20,size为8来假设
    char* __result;
    size_t __total_bytes = __size * __nobjs;//160
    size_t __bytes_left = _S_end_free - _S_start_free;//0 两者初始化都为0 //第二次_1 __bytes_left=320

    if (__bytes_left >= __total_bytes) {//第二次_2 返回开辟的内存
        __result = _S_start_free;
        _S_start_free += __total_bytes;
        return(__result);
    } else if (__bytes_left >= __size) {//如果想要申请其他大小的chunk块,可能会调用此方法在上一步申请的备用内存中查找有无可用的内存
        __nobjs = (int)(__bytes_left/__size);
        __total_bytes = __size * __nobjs;
        __result = _S_start_free;
        _S_start_free += __total_bytes;
        return(__result);
    } else {//初始化_1首先进入该分支
        size_t __bytes_to_get = 
	  2 * __total_bytes + _S_round_up(_S_heap_size >> 4);//_S_heap_size初始为0,初始化__bytes_to_get=320
        // Try to make use of the left-over piece.
        if (__bytes_left > 0) {
            _Obj* __STL_VOLATILE* __my_free_list =
                        _S_free_list + _S_freelist_index(__bytes_left);

            ((_Obj*)_S_start_free) -> _M_free_list_link = *__my_free_list;
            *__my_free_list = (_Obj*)_S_start_free;
        }
        _S_start_free = (char*)malloc(__bytes_to_get);//初始化_2跳到这一步
        if (0 == _S_start_free) {//如果开辟内存失败
            size_t __i;
            _Obj* __STL_VOLATILE* __my_free_list;
	    _Obj* __p;
            // Try to make do with what we have.  That can't
            // hurt.  We do not try smaller requests, since that tends
            // to result in disaster on multi-process machines.
            for (__i = __size;
                 __i <= (size_t) _MAX_BYTES;
                 __i += (size_t) _ALIGN) {
                __my_free_list = _S_free_list + _S_freelist_index(__i);
                __p = *__my_free_list;
                if (0 != __p) {
                    *__my_free_list = __p -> _M_free_list_link;
                    _S_start_free = (char*)__p;
                    _S_end_free = _S_start_free + __i;
                    return(_S_chunk_alloc(__size, __nobjs));
                    // Any leftover piece will eventually make it to the
                    // right free list.
                }
            }
	    _S_end_free = 0;	// In case of exception.
            _S_start_free = (char*)malloc_alloc::allocate(__bytes_to_get);
            // This should either throw an
            // exception or remedy the situation.  Thus we assume it
            // succeeded.
        }
        _S_heap_size += __bytes_to_get;//初始化_3 _S_heap_size=320
        _S_end_free = _S_start_free + __bytes_to_get;//_S_end_free是 char*类型,开辟一块320字节的内存块
        return(_S_chunk_alloc(__size, __nobjs));//初始化_4 递归调用自己
    }
}

deallocate

 /* __p may not be 0 */
  static void deallocate(void* __p, size_t __n)
  {
    if (__n > (size_t) _MAX_BYTES)//如果大于_MAX_BYTES,就用标准库的方法来
      malloc_alloc::deallocate(__p, __n);
    else {
      _Obj* __STL_VOLATILE*  __my_free_list
          = _S_free_list + _S_freelist_index(__n);//取数组中的元素
      _Obj* __q = (_Obj*)__p;

      // acquire lock
#       ifndef _NOTHREADS
      /*REFERENCED*/
      _Lock __lock_instance;
#       endif /* _NOTHREADS */
      __q -> _M_free_list_link = *__my_free_list;
      *__my_free_list = __q;//回收原来数组Obj*指向的内存
      // lock is released here
    }
  }

本文题目:C++的SGI版本的STL二级空间配置器实现(基于内存池的实现方式)
标题链接:http://azwzsj.com/article/dsoipoe.html