python实现窗函数的简单介绍

python中怎么生成基于窗函数的fir滤波器

SciPy提供了firwin用窗函数设计低通滤波器,firwin的调用形式如下:

创新互联公司专业为企业提供宜丰网站建设、宜丰做网站、宜丰网站设计、宜丰网站制作等企业网站建设、网页设计与制作、宜丰企业网站模板建站服务,十载宜丰做网站经验,不只是建网站,更提供有价值的思路和整体网络服务。

firwin(N, cutoff, width=None, window='hamming')

其中N为滤波器的长度;cutoff为以正规化的频率;window为所使用的窗函数。

2020-01-18 python实现stft并绘制时频谱

官方文档中给出了非常详细的安装方法

函数声明:

librosa.core.stft(y, n_fft=2048, hop_length=None, win_length=None, window='hann', center=True, dtype=class 'numpy.complex64', pad_mode='reflect')

常用参数说明:

y:输入的numpy数组,要求都是实数

n_fft:fft的长度,默认2048

hop_length:stft中窗函数每次步进的单位

win_length:窗函数的长度

window:窗函数的类型

return:一个1+n_fft/2*1+len(y)/hop_length的二维复数矩阵,其实就是时频谱

参考:

主要用这两个

matplotlib.pyplot.pcolormesh()

matplotlib.pyplot.colorbar()

Python 简单的扩音,音频去噪,静音剪切

数字信号是通过对连续的模拟信号采样得到的离散的函数。它可以简单看作一个以时间为下标的数组。比如,x[n],n为整数。比如下图是一个正弦信号(n=0,1, ..., 9):

对于任何的音频文件,实际上都是用这种存储方式,比如,下面是对应英文单词“skip”的一段信号(只不过由于点太多,笔者把点用直线连接了起来):

衡量数字信号的 能量(强度) ,只要简单的求振幅平方和即可:

我们知道,声音可以看作是不同频率的正弦信号叠加。那么给定一个声音信号(如上图),怎么能够知道这个信号在不同频率区段上的强度呢?答案是使用离散傅里叶变换。对信号x[n], n=0, ..., N-1,通常记它的离散傅里叶变换为X[n],它是一个复值函数。

比如,对上述英文单词“skip”对应的信号做离散傅里叶变换,得到它在频域中的图像是:

可以看到能量主要集中在中低音部分(约16000Hz以下)。

在频域上,也可以计算信号的强度,因为根据Plancherel定理,有:

对于一般的语音信号,长度都至少在1秒以上,有时候我们需要把其中比如25毫秒的一小部分单独拿出来研究。将一个信号依次取小段的操作,就称作分帧。技术上,音频分帧是通过给信号加一系列的 窗 函数 实现的。

我们把一种特殊的函数w[n],称作窗函数,如果对所有的n,有0=w[n]=1,且只有有限个n使得w[n]0。比如去噪要用到的汉宁窗,三角窗。

汉宁窗

三角窗

我们将平移的窗函数与原始信号相乘,便得到信号的“一帧”:

w[n+d]*x[n]

比如用长22.6毫秒的汉宁窗加到“skip”信号大约中间部位上,得到一帧的信号:

可见除一有限区间之外,加窗后的信号其他部分都是0。

对一帧信号可以施加离散傅里叶变换(也叫短时离散傅里叶变换),来获取信号在这一帧内(通常是很短时间内),有关频率-能量的分布信息。

如果我们把信号按照上述方法分成一帧一帧,又将每一帧用离散傅里叶变换转换到频域中去,最后将各帧在频域的图像拼接起来,用横坐标代表时间,纵坐标代表频率,颜色代表能量强度(比如红色代表高能,蓝色代表低能),那么我们就构造出所谓 频谱图 。比如上述“skip”发音对应的信号的频谱图是:

(使用5.8毫秒的汉宁窗)

从若干帧信号中,我们又可以恢复出原始信号。只要我们适当选取窗口大小,以及窗口之间的平移距离L,得到 ..., w[n+2L], w[n+L], w[n], w[n-L], w[n-2L], ...,使得对k求和有:

从而简单的叠加各帧信号便可以恢复出原始信号:

最后,注意窗函数也可以在频域作用到信号上,从而可以起到取出信号的某一频段的作用。

下面简单介绍一下3种音效。

1. 扩音

要扩大信号的强度,只要简单的增大信号的“振幅”。比如给定一个信号x[n],用a1去乘,便得到声音更大的增强信号:

同理,用系数0a1去乘,便得到声音变小的减弱信号。

2. 去噪(降噪)

对于白噪音,我们可以简单的用“移动平均滤波器”来去除,虽然这也会一定程度降低声音的强度,但效果的确不错。但是,对于成分较为复杂,特别是频段能量分布不均匀的噪声,则需要使用下面的 噪声门 技术,它可以看作是一种“多带通滤波器”。

这个特效的基本思路是:对一段噪声样本建模,然后降低待降噪信号中噪声的分贝。

更加细节的说,是在信号的若干频段f[1], ..., f[M]上,分别设置噪声门g[1], ..., g[M],每个门都有一个对应的阈值,分别是t[1], ..., t[M]。这些阈值时根据噪声样本确定的。比如当通过门g[m]的信号强度超过阈值t[m]时,门就会关闭,反之,则会重新打开。最后通过的信号便会只保留下来比噪声强度更大的声音,通常也就是我们想要的声音。

为了避免噪声门的开合造成信号的剧烈变动,笔者使用了sigmoid函数做平滑处理,即噪声门在开-关2个状态之间是连续变化的,信号通过的比率也是在1.0-0.0之间均匀变化的。

实现中,我们用汉宁窗对信号进行分帧。然后对每一帧,又用三角窗将信号分成若干频段。对噪声样本做这样的处理后,可以求出信号每一频段对应的阈值。然后,又对原始信号做这样的处理(分帧+分频),根据每一帧每一频段的信号强度和对应阈值的差(diff = energy-threshold),来计算对应噪声门的开合程度,即通过信号的强度。最后,简单的将各频段,各帧的通过信号叠加起来,便得到了降噪信号。

比如原先的“skip”语音信号频谱图如下:

可以看到有较多杂音(在高频,低频段,蓝色部分)。采集0.25秒之前的声音作为噪声样本,对信号作降噪处理,得到降噪后信号的频谱图如下:

可以明显的看到大部分噪音都被清除了,而语音部分仍完好无损,强度也没有减弱,这是“移动平均滤波器”所做不到的。

3. 静音剪切

在对音频进行上述降噪处理后,我们还可以进一步把多余的静音去除掉。

剪切的原理十分简单。首先用汉宁窗对信号做分帧。如果该帧信号强度过小,则舍去该帧。最后将保留的帧叠加起来,便得到了剪切掉静音部分的信号。

比如,对降噪处理后的“skip”语音信号做静音剪切,得到的新信号的频谱图为:


本文名称:python实现窗函数的简单介绍
文章出自:http://azwzsj.com/article/doohdhc.html