python损失函数概念的简单介绍
交叉熵损失函数是什么?
平滑函数。
创新互联建站为您提适合企业的网站设计 让您的网站在搜索引擎具有高度排名,让您的网站具备超强的网络竞争力!结合企业自身,进行网站设计及把握,最后结合企业文化和具体宗旨等,才能创作出一份性化解决方案。从网站策划到成都做网站、成都网站制作, 我们的网页设计师为您提供的解决方案。
交叉熵损失函数,也称为对数损失或者logistic损失。当模型产生了预测值之后,将对类别的预测概率与真实值(由0或1组成)进行不比较,计算所产生的损失,然后基于此损失设置对数形式的惩罚项。
在神经网络中,所使用的Softmax函数是连续可导函数,这使得可以计算出损失函数相对于神经网络中每个权重的导数(在《机器学习数学基础》中有对此的完整推导过程和案例,这样就可以相应地调整模型的权重以最小化损失函数。
扩展资料:
注意事项:
当预测类别为二分类时,交叉熵损失函数的计算公式如下图,其中y是真实类别(值为0或1),p是预测类别的概率(值为0~1之间的小数)。
计算二分类的交叉熵损失函数的python代码如下图,其中esp是一个极小值,第五行代码clip的目的是保证预测概率的值在0~1之间,输出的损失值数组求和后,就是损失函数最后的返回值。
参考资料来源:百度百科-交叉熵
参考资料来源:百度百科-损失函数
python gradientboostingregressor可以做预测吗
可以
最近项目中涉及基于Gradient Boosting Regression 算法拟合时间序列曲线的内容,利用python机器学习包 scikit-learn 中的GradientBoostingRegressor完成
因此就学习了下Gradient Boosting算法,在这里分享下我的理解
Boosting 算法简介
Boosting算法,我理解的就是两个思想:
1)“三个臭皮匠顶个诸葛亮”,一堆弱分类器的组合就可以成为一个强分类器;
2)“知错能改,善莫大焉”,不断地在错误中学习,迭代来降低犯错概率
当然,要理解好Boosting的思想,首先还是从弱学习算法和强学习算法来引入:
1)强学习算法:存在一个多项式时间的学习算法以识别一组概念,且识别的正确率很高;
2)弱学习算法:识别一组概念的正确率仅比随机猜测略好;
Kearns Valiant证明了弱学习算法与强学习算法的等价问题,如果两者等价,只需找到一个比随机猜测略好的学习算法,就可以将其提升为强学习算法。
那么是怎么实现“知错就改”的呢?
Boosting算法,通过一系列的迭代来优化分类结果,每迭代一次引入一个弱分类器,来克服现在已经存在的弱分类器组合的shortcomings
在Adaboost算法中,这个shortcomings的表征就是权值高的样本点
而在Gradient Boosting算法中,这个shortcomings的表征就是梯度
无论是Adaboost还是Gradient Boosting,都是通过这个shortcomings来告诉学习器怎么去提升模型,也就是“Boosting”这个名字的由来吧
Adaboost算法
Adaboost是由Freund 和 Schapire在1997年提出的,在整个训练集上维护一个分布权值向量W,用赋予权重的训练集通过弱分类算法产生分类假设(基学习器)y(x),然后计算错误率,用得到的错误率去更新分布权值向量w,对错误分类的样本分配更大的权值,正确分类的样本赋予更小的权值。每次更新后用相同的弱分类算法产生新的分类假设,这些分类假设的序列构成多分类器。对这些多分类器用加权的方法进行联合,最后得到决策结果。
其结构如下图所示:
前一个学习器改变权重w,然后再经过下一个学习器,最终所有的学习器共同组成最后的学习器。
如果一个样本在前一个学习器中被误分,那么它所对应的权重会被加重,相应地,被正确分类的样本的权重会降低。
这里主要涉及到两个权重的计算问题:
1)样本的权值
1 没有先验知识的情况下,初始的分布应为等概分布,样本数目为n,权值为1/n
2 每一次的迭代更新权值,提高分错样本的权重
2)弱学习器的权值
1 最后的强学习器是通过多个基学习器通过权值组合得到的。
2 通过权值体现不同基学习器的影响,正确率高的基学习器权重高。实际上是分类误差的一个函数
Gradient Boosting
和Adaboost不同,Gradient Boosting 在迭代的时候选择梯度下降的方向来保证最后的结果最好。
损失函数用来描述模型的“靠谱”程度,假设模型没有过拟合,损失函数越大,模型的错误率越高
如果我们的模型能够让损失函数持续的下降,则说明我们的模型在不停的改进,而最好的方式就是让损失函数在其梯度方向上下降。
下面这个流程图是Gradient Boosting的经典图了,数学推导并不复杂,只要理解了Boosting的思想,不难看懂
这里是直接对模型的函数进行更新,利用了参数可加性推广到函数空间。
训练F0-Fm一共m个基学习器,沿着梯度下降的方向不断更新ρm和am
GradientBoostingRegressor实现
python中的scikit-learn包提供了很方便的GradientBoostingRegressor和GBDT的函数接口,可以很方便的调用函数就可以完成模型的训练和预测
GradientBoostingRegressor函数的参数如下:
class sklearn.ensemble.GradientBoostingRegressor(loss='ls', learning_rate=0.1, n_estimators=100, subsample=1.0, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_depth=3, init=None, random_state=None, max_features=None, alpha=0.9, verbose=0, max_leaf_nodes=None, warm_start=False, presort='auto')[source]¶
loss: 选择损失函数,默认值为ls(least squres)
learning_rate: 学习率,模型是0.1
n_estimators: 弱学习器的数目,默认值100
max_depth: 每一个学习器的最大深度,限制回归树的节点数目,默认为3
min_samples_split: 可以划分为内部节点的最小样本数,默认为2
min_samples_leaf: 叶节点所需的最小样本数,默认为1
……
可以参考
官方文档里带了一个很好的例子,以500个弱学习器,最小平方误差的梯度提升模型,做波士顿房价预测,代码和结果如下:
1 import numpy as np 2 import matplotlib.pyplot as plt 3 4 from sklearn import ensemble 5 from sklearn import datasets 6 from sklearn.utils import shuffle 7 from sklearn.metrics import mean_squared_error 8 9 ###############################################################################10 # Load data11 boston = datasets.load_boston()12 X, y = shuffle(boston.data, boston.target, random_state=13)13 X = X.astype(np.float32)14 offset = int(X.shape[0] * 0.9)15 X_train, y_train = X[:offset], y[:offset]16 X_test, y_test = X[offset:], y[offset:]17 18 ###############################################################################19 # Fit regression model20 params = {'n_estimators': 500, 'max_depth': 4, 'min_samples_split': 1,21 'learning_rate': 0.01, 'loss': 'ls'}22 clf = ensemble.GradientBoostingRegressor(**params)23 24 clf.fit(X_train, y_train)25 mse = mean_squared_error(y_test, clf.predict(X_test))26 print("MSE: %.4f" % mse)27 28 ###############################################################################29 # Plot training deviance30 31 # compute test set deviance32 test_score = np.zeros((params['n_estimators'],), dtype=np.float64)33 34 for i, y_pred in enumerate(clf.staged_predict(X_test)):35 test_score[i] = clf.loss_(y_test, y_pred)36 37 plt.figure(figsize=(12, 6))38 plt.subplot(1, 2, 1)39 plt.title('Deviance')40 plt.plot(np.arange(params['n_estimators']) + 1, clf.train_score_, 'b-',41 label='Training Set Deviance')42 plt.plot(np.arange(params['n_estimators']) + 1, test_score, 'r-',43 label='Test Set Deviance')44 plt.legend(loc='upper right')45 plt.xlabel('Boosting Iterations')46 plt.ylabel('Deviance')47 48 ###############################################################################49 # Plot feature importance50 feature_importance = clf.feature_importances_51 # make importances relative to max importance52 feature_importance = 100.0 * (feature_importance / feature_importance.max())53 sorted_idx = np.argsort(feature_importance)54 pos = np.arange(sorted_idx.shape[0]) + .555 plt.subplot(1, 2, 2)56 plt.barh(pos, feature_importance[sorted_idx], align='center')57 plt.yticks(pos, boston.feature_names[sorted_idx])58 plt.xlabel('Relative Importance')59 plt.title('Variable Importance')60 plt.show()
可以发现,如果要用Gradient Boosting 算法的话,在sklearn包里调用还是非常方便的,几行代码即可完成,大部分的工作应该是在特征提取上。
感觉目前做数据挖掘的工作,特征设计是最重要的,据说现在kaggle竞赛基本是GBDT的天下,优劣其实还是特征上,感觉做项目也是,不断的在研究数据中培养对数据的敏感度。
神经网络的损失函数需要设置require_grad吗
对于神经网络的损失函数来说,通常不需要设置 `require_grad=True`。因为损失函数的计算过程不需要反向传播梯度,只需要将输出结果与真实值进行比较即可。
在 PyTorch 中,如果损失函数的计算过程需要梯度反向传播,则需要将其设置为可微分张量,同时设置 `require_grad=True`。但是,对于大部分损失函数来说,这并不是必需的。
当我们在训练神经网络时,可以通过反向传播算法求解每个参数对损失函数的贡献度,从而更新模型参数。这个过程中只需要设置网络中需要反向传播的张量的 `require_grad=True` 即可。
当前名称:python损失函数概念的简单介绍
文章地址:http://azwzsj.com/article/dojscjj.html