pythonq函数 python @函数

Python中的常用内置函数有哪些呢?

(1)Lambda函数

我们提供的服务有:成都网站设计、网站建设、微信公众号开发、网站优化、网站认证、东宝ssl等。为上千企事业单位解决了网站和推广的问题。提供周到的售前咨询和贴心的售后服务,是有科学管理、有技术的东宝网站制作公司

用于创建匿名函数,即没有名称的函数。它只是一个表达式,函数体比def简单很多。当我们需要创建一个函数来执行单个操作并且可以在一行中编写时,就可以用到匿名函数了。

Lamdba的主体是一个表达式,而不是一个代码块。仅仅能在lambda表达式中封装有限的逻辑进去。

利用Lamdba函数,往往可以将代码简化许多。

(2)Map函数

会将一个函数映射到一个输入列表的所有元素上,比如我们先创建了一个函数来返回一个大写的输入单词,然后将此函数应有到列表colors中的所有元素。

我们还可以使用匿名函数lamdba来配合map函数,这样可以更加精简。

(3)Reduce函数

当需要对一个列表进行一些计算并返回结果时,reduce()是个非常有用的函数。举个例子,当需要计算一个整数列表所有元素的乘积时,即可使用reduce函数实现。

它与函数的最大的区别就是,reduce()里的映射函数(function)接收两个参数,而map接收一个参数。

(4)enumerate函数

用于将一个可遍历的数据对象(如列表、元组或字符串)组合为一个索引序列,同时列出数据和数据下标,一般用在for循环当中。

它的两个参数,一个是序列、迭代器或其他支持迭代对象;另一个是下标起始位置,默认情况从0开始,也可以自定义计数器的起始编号。

(5)Zip函数

用于将可迭代的对象作为参数,将对象中对应的元素打包成一个个元组,然后返回由这些元组组成的列表

当我们使用zip()函数时,如果各个迭代器的元素个数不一致,则返回列表长度与最短的对象相同。

Python Queue 入门

Queue 叫队列,是数据结构中的一种,基本上所有成熟的编程语言都内置了对 Queue 的支持。

Python 中的 Queue 模块实现了多生产者和多消费者模型,当需要在多线程编程中非常实用。而且该模块中的 Queue 类实现了锁原语,不需要再考虑多线程安全问题。

该模块内置了三种类型的 Queue,分别是 class queue.Queue(maxsize=0) , class queue.LifoQueue(maxsize=0) 和 class queue.PriorityQueue(maxsize=0) 。它们三个的区别仅仅是取出时的顺序不一致而已。

Queue 是一个 FIFO 队列,任务按照添加的顺序被取出。

LifoQueue 是一个 LIFO 队列,类似堆栈,后添加的任务先被取出。

PriorityQueue 是一个优先级队列,队列里面的任务按照优先级排序,优先级高的先被取出。

如你所见,就是上面所说的三种不同类型的内置队列,其中 maxsize 是个整数,用于设置可以放入队列中的任务数的上限。当达到这个大小的时候,插入操作将阻塞至队列中的任务被消费掉。如果 maxsize 小于等于零,则队列尺寸为无限大。

向队列中添加任务,直接调用 put() 函数即可

put() 函数完整的函数签名如下 Queue.put(item, block=True, timeout=None) ,如你所见,该函数有两个可选参数。

默认情况下,在队列满时,该函数会一直阻塞,直到队列中有空余的位置可以添加任务为止。如果 timeout 是正数,则最多阻塞 timeout 秒,如果这段时间内还没有空余的位置出来,则会引发 Full 异常。

当 block 为 false 时,timeout 参数将失效。同时如果队列中没有空余的位置可添加任务则会引发 Full 异常,否则会直接把任务放入队列并返回,不会阻塞。

另外,还可以通过 Queue.put_nowait(item) 来添加任务,相当于 Queue.put(item, False) ,不再赘述。同样,在队列满时,该操作会引发 Full 异常。

从队列中获取任务,直接调用 get() 函数即可。

与 put() 函数一样, get() 函数也有两个可选参数,完整签名如下 Queue.get(block=True, timeout=None) 。

默认情况下,当队列空时调用该函数会一直阻塞,直到队列中有任务可获取为止。如果 timeout 是正数,则最多阻塞 timeout 秒,如果这段时间内还没有任务可获取,则会引发 Empty 异常。

当 block 为 false 时,timeout 参数将失效。同时如果队列中没有任务可获取则会立刻引发 Empty 异常,否则会直接获取一个任务并返回,不会阻塞。

另外,还可以通过 Queue.get_nowait() 来获取任务,相当于 Queue.get(False) ,不再赘述。同样,在队列为空时,该操作会引发 Empty 异常。

Queue.qsize() 函数返回队列的大小。注意这个大小不是精确的,qsize() 0 不保证后续的 get() 不被阻塞,同样 qsize() maxsize 也不保证 put() 不被阻塞。

如果队列为空,返回 True ,否则返回 False 。如果 empty() 返回 True ,不保证后续调用的 put() 不被阻塞。类似的,如果 empty() 返回 False ,也不保证后续调用的 get() 不被阻塞。

如果队列是满的返回 True ,否则返回 False 。如果 full() 返回 True 不保证后续调用的 get() 不被阻塞。类似的,如果 full() 返回 False 也不保证后续调用的 put() 不被阻塞。

queue.Queue() 是 FIFO 队列,出队顺序跟入队顺序是一致的。

queue.LifoQueue() 是 LIFO 队列,出队顺序跟入队顺序是完全相反的,类似于栈。

优先级队列中的任务顺序跟放入时的顺序是无关的,而是按照任务的大小来排序,最小值先被取出。那任务比较大小的规则是怎么样的呢。

注意,因为列表的比较对规则是按照下标顺序来比较的,所以在没有比较出大小之前 ,队列中所有列表对应下标位置的元素类型要一致。

好比 [2,1] 和 ["1","b"] 因为第一个位置的元素类型不一样,所以是没有办法比较大小的,所以也就放入不了优先级队列。

然而对于 [2,1] 和 [1,"b"] 来说即使第二个元素的类型不一致也是可以放入优先级队列的,因为只需要比较第一个位置元素的大小就可以比较出结果了,就不需要比较第二个位置元素的大小了。

但是对于 [2,1] 和 1 [2,"b"] 来说,则同样不可以放入优先级队列,因为需要比较第二个位置的元素才可以比较出结果,然而第二个位置的元素类型是不一致的,无法比较大小。

综上,也就是说, 直到在比较出结果之前,对应下标位置的元素类型都是需要一致的 。

下面我们自定义一个动物类型,希望按照年龄大小来做优先级排序。年龄越小优先级越高。

本章节介绍了队列以及其常用操作。因为队列默认实现了锁原语,因此在多线程编程中就不需要再考虑多线程安全问题了,对于程序员来说相当友好了。

利用Python进行数据分析(10)-移动窗口函数

Python-for-data-移动窗口函数

本文中介绍的是 ,主要的算子是:

统计和通过其他移动窗口或者指数衰减而运行的函数,称之为 移动窗口函数

style scoped="".dataframe tbody tr th:only-of-type { vertical-align: middle; } precode.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } /code/pre/style

2292 rows × 3 columns

rolling算子,行为和resample和groupby类似

rolling可以在S或者DF上通过一个window进行调用

style scoped="".dataframe tbody tr th:only-of-type { vertical-align: middle; } precode.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } /code/pre/style

2292 rows × 3 columns

指定一个常数衰减因子为观测值提供更多的权重。常用指定衰减因子的方法:使用span(跨度)

一些统计算子,例如相关度和协方差等需要同时操作两个时间序列。

例如,金融分析中的股票和基准指数的关联性问题:计算时间序列的百分比变化pct_change()

style scoped="".dataframe tbody tr th:only-of-type { vertical-align: middle; } precode.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } /code/pre/style

在rolling及其相关方法上使用apply方法提供了一种在移动窗口中应用自己设计的数组函数的方法。

唯一要求:该函数从每个数组中产生一个单值(缩聚),例如使用rolling()...quantile(q)计算样本的中位数

python一个函数qh2(x,y,z),表示从x加到y,每次增加z怎么处理?

包括y的话:

def qh2(x, y, z):

result = 0

for i in range(x, y+1, z):

result += i

return result


本文标题:pythonq函数 python @函数
标题URL:http://azwzsj.com/article/dojoicg.html