python高阶迭代函数 python迭代法求高次方程

Python中的“迭代”详解

迭代器模式:一种惰性获取数据项的方式,即按需一次获取一个数据项。

专注于为中小企业提供成都网站制作、网站建设、外贸网站建设服务,电脑端+手机端+微信端的三站合一,更高效的管理,为中小企业祁县免费做网站提供优质的服务。我们立足成都,凝聚了一批互联网行业人才,有力地推动了上1000+企业的稳健成长,帮助中小企业通过网站建设实现规模扩充和转变。

所有序列都是可以迭代的。我们接下来要实现一个 Sentence(句子)类,我们向这个类的构造方法传入包含一些文本的字符串,然后可以逐个单词迭代。

接下来测试 Sentence 实例能否迭代

序列可以迭代的原因:

iter()

解释器需要迭代对象 x 时,会自动调用iter(x)。

内置的 iter 函数有以下作用:

由于序列都实现了 __getitem__ 方法,所以都可以迭代。

可迭代对象:使用内置函数 iter() 可以获取迭代器的对象。

与迭代器的关系:Python 从可迭代对象中获取迭代器。

下面用for循环迭代一个字符串,这里字符串 'abc' 是可迭代的对象,用 for 循环迭代时是有生成器,只是 Python 隐藏了。

如果没有 for 语句,使用 while 循环模拟,要写成下面这样:

Python 内部会处理 for 循环和其他迭代上下文(如列表推导,元组拆包等等)中的 StopIteration 异常。

标准的迭代器接口有两个方法:

__next__ :返回下一个可用的元素,如果没有元素了,抛出 StopIteration 异常。

__iter__ :返回 self,以便在需要使用可迭代对象的地方使用迭代器,如 for 循环中。

迭代器:实现了无参数的 __next__ 方法,返回序列中的下一个元素;如果没有元素了,那么抛出 StopIteration 异常。Python 中的迭代器还实现了 __iter__ 方法,因此迭代器也可以迭代。

接下来使用迭代器模式实现 Sentence 类:

注意, 不要 在 Sentence 类中实现 __next__ 方法,让 Sentence 实例既是可迭代对象,也是自身的迭代器。

为了“支持多种遍历”,必须能从同一个可迭代的实例中获取多个独立的迭代器,而且各个迭代器要能维护自身的内部状态,因此这一模式正确的实现方式是,每次调用 iter(my_iterable) 都新建一个独立的迭代器。

所以总结下来就是:

实现相同功能,但却符合 Python 习惯的方式是,用生成器函数代替 SentenceIteror 类。

只要 Python 函数的定义体中有 yield 关键字,该函数就是生成器函数。调用生成器函数,就会返回一个生成器对象。

生成器函数会创建一个生成器对象,包装生成器函数的定义体,把生成器传给 next(...) 函数时,生成器函数会向前,执行函数定义体中的下一个 yield 语句,返回产出的值,并在函数定义体的当前位置暂停,。最终,函数的定义体返回时,外层的生成器对象会抛出 StopIteration 异常,这一点与迭代器协议一致。

如今这一版 Sentence 类相较之前简短多了,但是还不够慵懒。 惰性 ,是如今人们认为最好的特质。惰性实现是指尽可能延后生成值,这样做能节省内存,或许还能避免做无用的处理。

目前实现的几版 Sentence 类都不具有惰性,因为 __init__ 方法急迫的构建好了文本中的单词列表,然后将其绑定到 self.words 属性上。这样就得处理整个文本,列表使用的内存量可能与文本本身一样多(或许更多,取决于文本中有多少非单词字符)。

re.finditer 函数是 re.findall 函数的惰性版本,返回的是一个生成器,按需生成 re.MatchObject 实例。我们可以使用这个函数来让 Sentence 类变得懒惰,即只在需要时才生成下一个单词。

标准库提供了很多生成器函数,有用于逐行迭代纯文本文件的对象,还有出色的 os.walk 函数等等。本节专注于通用的函数:参数为任意的可迭代对象,返回值是生成器,用于生成选中的、计算出的和重新排列的元素。

第一组是用于 过滤 的生成器函数:从输入的可迭代对象中产出元素的子集,而且不修改元素本身。这种函数大多数都接受一个断言参数(predicate),这个参数是个 布尔函数 ,有一个参数,会应用到输入中的每个元素上,用于判断元素是否包含在输出中。

以下为这些函数的演示:

第二组是用于映射的生成器函数:在输入的单个/多个可迭代对象中的各个元素上做计算,然后返回结果。

以下为这些函数的用法:

第三组是用于合并的生成器函数,这些函数都可以从输入的多个可迭代对象中产出元素。

以下为演示:

第四组是从一个元素中产出多个值,扩展输入的可迭代对象。

以下为演示:

第五组生成器函数用于产出输入的可迭代对象中的全部元素,不过会以某种方式重新排列。

下面的函数都接受一个可迭代的对象,然后返回单个结果,这种函数叫“归约函数”,“合拢函数”或“累加函数”,其实,这些内置函数都可以用 functools.reduce 函数实现,但内置更加方便,而且还有一些优点。

参考教程:

《流畅的python》 P330 - 363

Python 之内置函数:filter、map、reduce、zip、enumerate

这几个函数在 Python 里面被称为高阶函数,本文主要学习它们的用法。

filter 函数原型如下:

第一个参数是判断函数(返回结果需要是 True 或者 False),第二个为序列,该函数将对 iterable 序列依次执行 function(item) 操作,返回结果是过滤之后结果组成的序列。

简单记忆:对序列中的元素进行筛选,获取符合条件的序列。

返回结果为: ,使用 list 函数可以输入序列内容。

map 函数原型如下:

该函数运行之后生成一个 list,第一个参数是函数、第二个参数是一个或多个序列;

下述代码是一个简单的测试案例:

上述代码运行完毕,得到的结果是: 。使用 print(list(my_new_list)) 可以得到结果。

map 函数的第一个参数,可以有多个参数,当这种情况出现后,后面的第二个参数需要是多个序列。

map 函数解决的问题:

reduce 函数原型如下:

第一个参数是函数,第二个参数是序列,返回计算结果之后的值。该函数价值在于滚动计算应用于列表中的连续值。

测试代码如下:

最终的结果是 6,如果设置第三个参数为 4,可以运行代码查看结果,最后得到的结论是,第三个参数表示初始值,即累加操作初始的数值。

简单记忆:对序列内所有元素进行累计操作。

zip 函数原型如下:

zip 函数将可迭代的对象作为参数,将对象中对应的元素打包成一个个元组,然后返回由这些元组组成的列表。

如果各个迭代器的元素个数不一样,则返回列表长度与最短的对象相同,利用星号( * )操作符,可以将元组解压为列表。

测试代码如下:

展示如何利用 * 操作符:

输出结果如下:

简单记忆:zip 的功能是映射多个容器的相似索引,可以方便用于来构造字典。

enumerate 函数原型如下:

参数说明:

该函数用于将一个可遍历的数据对象组合为一个索引序列,同时列出数据和数据下标,一般用在 for 循环当中。

测试代码如下:

返回结果为: 。

本文涉及的函数可以与 lambda 表达式进行结合,能大幅度提高编码效率。最好的学习资料永远是官方手册

python中的迭代是什么意思?

数学上面的定义:迭代公式就是指用现在的值,代到一个公式里面,算出下一个值,再用下一个值代入公式,如此往复地代。比如:x=(x+2/x)/2 你随便拿一个x=10代入,得x=(10+2/10)/2=5.1,再代进去x=(5.1+2/5.1)/2=2.746,再代入得1.737,以此类推。

在python中,迭代式也可以是递归的调用,下面给你举个例子:

def f(n):

if n == 0 or n == 1 or n == 2: return 1

else: return f(n-1) + f(n-2)

这就是一个简单的第n项斐波那契数的求法,这里就用的是迭代式。另外的例子就是牛顿迭代法,采用逐次渐进的效果求出n的开方数,下面是例子:

def f(guess):

return guess ** 2

def fd(guess):

return 2 * guess

def SquareRootNR(x, epsilon):

guess = x / 2.0

diff = f(guess) - x

ctr = 1

while abs(diff) epsilon and ctr = 100:

guess = guess - diff / fd(guess)

diff = f(guess) - x

ctr += 1。

python高阶函数有哪些

1、map

map()函数接受两个参数,一个是函数,一个是Iterable,map将传入的函数依次作用到序列的每一个元素上,并把结果作为新的Iterator返回。

举例,比如我们有一个函数f(x)=x*2,要把这个函数作用在一个list[1, 2, 3, 4, 5, 6, 7, 8,

9]上,就可以用map()实现。

def f(x):

... return x*2

...

r = map(f, [1, 2, 3, 4, 5, 6, 7, 8, 9])

list(r)

[2, 4, 6, 8, 10, 12, 14, 16, 18]

所以,map()作为高阶函数,事实上它把运算规则抽象了,因此,我们不但可以计算简单的f(x)=x*2,还可以计算任意复杂的函数,比如把这个list所有的数字转为字符串:

list(map(str,[1, 2, 3, 4, 5, 6, 7, 8, 9]))

["1", "2", "3", "4", "5", "6", "7", "8", "9"]

2、reduce

reduce是把一个函数作用在一个序列[x1, x2,

x3……]上,这个函数必须接收两个参数,reduce把结果继续和序列的下一个元素做累计计算。简单来说,就是先计算x1和x2的结果,再拿结果与x3计算,依次类推。比如说一个序列求和,就可以用reduce实现。

from functools import reduce

def add(x, y):

... return x + y

...

reduce(add, [1, 3, 5, 7, 9])

25

也就是说,假设python没有提供int()函数,你完全可以自己写一个把字符串转化为整数的函数,而且只需要几行代码。

3、filter

用于过滤序列,和map函数类似,filter也接收一个函数和一个序列,不同于map的是,filter把传入的函数依次作用于每一个元素,然后根据返回值是True还是False决定保留还是丢弃该元素,例如,在一个list中,删掉偶数,只保留奇数,可以这么写:

def is_odd(n):

return n % 2 == 1

list(filter(is_odd, [1, 2, 4, 5, 6, 9, 10, 15]))

# 结果: [1, 5, 9, 15]

把一个序列中的空字符串删掉,可以这么写:

def not_empty(s):

return s and s.strip()

list(filter(not_empty, ["A", "", "B", None, "C", " "]))

# 结果: ["A", "B", "C"]

可见用filter()这个高阶函数,关键在于正确实现一个筛选函数。

4、sorted

无论冒泡排序还是快速排序,排序的核心是比较两个元素的大小。如果是数字,我们可以直接比较,但如果是字符串或者两个dict呢?直接比较数学上的大小是没有意义的,因此,比较的过程必须通过函数抽象出来,Python内置的sorted()函数就可以对list进行排序:

sorted([36, 5, -12, 9, -21])

[-21, -12, 5, 9, 36]

此外,sorted()函数也是一个高阶函数,它还可以接收一个key函数来实现自定义的排序,例如按绝对值大小排序:

sorted([36, 5, -12, 9, -21], key=abs)

[5, 9, -12, -21, 36]


分享标题:python高阶迭代函数 python迭代法求高次方程
标题网址:http://azwzsj.com/article/dojesgp.html