mysql怎么优化最佳 mysql如何优化sql
Mysql某个表有近千万数据,CRUD比较慢,如何优化?
数据千万级别之多,占用的存储空间也比较大,可想而知它不会存储在一块连续的物理空间上,而是链式存储在多个碎片的物理空间上。可能对于长字符串的比较,就用更多的时间查找与比较,这就导致用更多的时间。
成都创新互联主营册亨网站建设的网络公司,主营网站建设方案,成都app软件开发,册亨h5小程序设计搭建,册亨网站营销推广欢迎册亨等地区企业咨询
可以做表拆分,减少单表字段数量,优化表结构。
在保证主键有效的情况下,检查主键索引的字段顺序,使得查询语句中条件的字段顺序和主键索引的字段顺序保持一致。
主要两种拆分 垂直拆分,水平拆分。
垂直分表
也就是“大表拆小表”,基于列字段进行的。一般是表中的字段较多,将不常用的, 数据较大,长度较长(比如text类型字段)的拆分到“扩展表“。 一般是针对 那种 几百列的大表,也避免查询时,数据量太大造成的“跨页”问题。
垂直分库针对的是一个系统中的不同业务进行拆分,比如用户User一个库,商品Product一个库,订单Order一个库。 切分后,要放在多个服务器上,而不是一个服务器上。为什么? 我们想象一下,一个购物网站对外提供服务,会有用户,商品,订单等的CRUD。没拆分之前, 全部都是落到单一的库上的,这会让数据库的单库处理能力成为瓶颈。按垂直分库后,如果还是放在一个数据库服务器上, 随着用户量增大,这会让单个数据库的处理能力成为瓶颈,还有单个服务器的磁盘空间,内存,tps等非常吃紧。 所以我们要拆分到多个服务器上,这样上面的问题都解决了,以后也不会面对单机资源问题。
数据库业务层面的拆分,和服务的“治理”,“降级”机制类似,也能对不同业务的数据分别的进行管理,维护,监控,扩展等。 数据库往往最容易成为应用系统的瓶颈,而数据库本身属于“有状态”的,相对于Web和应用服务器来讲,是比较难实现“横向扩展”的。 数据库的连接资源比较宝贵且单机处理能力也有限,在高并发场景下,垂直分库一定程度上能够突破IO、连接数及单机硬件资源的瓶颈。
水平分表
针对数据量巨大的单张表(比如订单表),按照某种规则(RANGE,HASH取模等),切分到多张表里面去。 但是这些表还是在同一个库中,所以库级别的数据库操作还是有IO瓶颈。不建议采用。
水平分库分表
将单张表的数据切分到多个服务器上去,每个服务器具有相应的库与表,只是表中数据集合不同。 水平分库分表能够有效的缓解单机和单库的性能瓶颈和压力,突破IO、连接数、硬件资源等的瓶颈。
水平分库分表切分规则
1. RANGE
从0到10000一个表,10001到20000一个表;
2. HASH取模
一个商场系统,一般都是将用户,订单作为主表,然后将和它们相关的作为附表,这样不会造成跨库事务之类的问题。 取用户id,然后hash取模,分配到不同的数据库上。
3. 地理区域
比如按照华东,华南,华北这样来区分业务,七牛云应该就是如此。
4. 时间
按照时间切分,就是将6个月前,甚至一年前的数据切出去放到另外的一张表,因为随着时间流逝,这些表的数据 被查询的概率变小,所以没必要和“热数据”放在一起,这个也是“冷热数据分离”。
分库分表后面临的问题
事务支持
分库分表后,就成了分布式事务了。如果依赖数据库本身的分布式事务管理功能去执行事务,将付出高昂的性能代价; 如果由应用程序去协助控制,形成程序逻辑上的事务,又会造成编程方面的负担。
跨库join
只要是进行切分,跨节点Join的问题是不可避免的。但是良好的设计和切分却可以减少此类情况的发生。解决这一问题的普遍做法是分两次查询实现。在第一次查询的结果集中找出关联数据的id,根据这些id发起第二次请求得到关联数据。
跨节点的count,order by,group by以及聚合函数问题
这些是一类问题,因为它们都需要基于全部数据集合进行计算。多数的代理都不会自动处理合并工作。解决方案:与解决跨节点join问题的类似,分别在各个节点上得到结果后在应用程序端进行合并。和join不同的是每个结点的查询可以并行执行,因此很多时候它的速度要比单一大表快很多。但如果结果集很大,对应用程序内存的消耗是一个问题。
数据迁移,容量规划,扩容等问题
来自淘宝综合业务平台团队,它利用对2的倍数取余具有向前兼容的特性(如对4取余得1的数对2取余也是1)来分配数据,避免了行级别的数据迁移,但是依然需要进行表级别的迁移,同时对扩容规模和分表数量都有限制。总得来说,这些方案都不是十分的理想,多多少少都存在一些缺点,这也从一个侧面反映出了Sharding扩容的难度。
ID问题
一旦数据库被切分到多个物理结点上,我们将不能再依赖数据库自身的主键生成机制。一方面,某个分区数据库自生成的ID无法保证在全局上是唯一的;另一方面,应用程序在插入数据之前需要先获得ID,以便进行SQL路由.
一些常见的主键生成策略
UUID
使用UUID作主键是最简单的方案,但是缺点也是非常明显的。由于UUID非常的长,除占用大量存储空间外,最主要的问题是在索引上,在建立索引和基于索引进行查询时都存在性能问题。
Twitter的分布式自增ID算法Snowflake
在分布式系统中,需要生成全局UID的场合还是比较多的,twitter的snowflake解决了这种需求,实现也还是很简单的,除去配置信息,核心代码就是毫秒级时间41位 机器ID 10位 毫秒内序列12位。
跨分片的排序分页
一般来讲,分页时需要按照指定字段进行排序。当排序字段就是分片字段的时候,我们通过分片规则可以比较容易定位到指定的分片,而当排序字段非分片字段的时候,情况就会变得比较复杂了。为了最终结果的准确性,我们需要在不同的分片节点中将数据进行排序并返回,并将不同分片返回的结果集进行汇总和再次排序,最后再返回给用户。
linux 下怎么优化mysql占用内存?
修改mysql配置文件,优化缓存大小和连接数连接方式,优化sql语句 ,记得mysql好像是有工具可以查看最占用资源的sql语句,找到他,优化他。
安装好mysql后,配制文件应该在/usr/local/mysql/share/mysql目录中,配制文件有几个,有my-huge.cnf my-medium.cnf my-large.cnf my-small.cnf,不同的流量的网站和不同配制的服务器环境,当然需要有不同的配制文件了。
一般的情况下,my-medium.cnf这个配制文件就能满足我们的大多需要;一般我们会把配置文件拷贝到/etc/my.cnf 只需要修改这个配置文件就可以了,使用mysqladmin variables extended-status _u root _p 可以看到目前的参数,有3个配置参数是最重要的,即key_buffer_size,query_cache_size,table_cache。
key_buffer_size只对MyISAM表起作用,
key_buffer_size指定索引缓冲区的大小,它决定索引处理的速度,尤其是索引读的速度。一般我们设为16M,实际上稍微大一点的站点 这个数字是远远不够的,通过检查状态值Key_read_requests和Key_reads,可以知道key_buffer_size设置是否合理。比例 key_reads / key_read_requests应该尽可能的低,至少是1:100,1:1000更好(上述状态值可以使用SHOW STATUS LIKE ‘key_read%’获得)。 或者如果你装了phpmyadmin 可以通过服务器运行状态看到,笔者推荐用phpmyadmin管理mysql,以下的状态值都是本人通过phpmyadmin获得的实例分析:
这个服务器已经运行了20天
key_buffer_size _ 128M
key_read_requests _ 650759289
key_reads - 79112
比例接近1:8000 健康状况非常好
mysql优化
1,sql的编译顺序
sql 编译顺序 from… on… join… where… order by… group by… having… select…
2,查看sql语句性能:
explain 查询sql语句
3,优化
(1). 最佳作前缀,使用索引顺序(按编译顺序)与定义索引时顺序一致,若该字段有跳过、反序,该字段及后面字段索引失效
(2). where条件中一切不是=的操作大概率会使索引失效,包括in、!=、、is null、计算、函数等等
(3). 查询字段与条件字段不一致时使用子查询,避免临时表出现
(4). 若用了复合索引,尽量使用全部索引字段
(5). 能不查询多字段时,尽量使用索引覆盖
(6). 使用like模糊查询时,按关键字左匹配,即‘x%’,若使用’%x%’,索引失效
(7). or会使全部索引失效
(8). 尽量不要导致类型转换,否则索引失效
(9). 使用order by时,根据表中数据量调整单路还是双路查询,也可以调整buffer区大小:如set_max_length_for_sort_data = 1024 (单位byte)
(10). 避免使用select *…
(11). 分页偏移量大时,尽量使用子查询 select * from tab where id=(select id from tab limit 100000,1) limit 100;
怎么进行mysql数据库优化?
有八个方面可以对mysql进行优化:
1、选取最适用的字段属性
MySQL可以很好的支持大数据量的存取,但是一般说来,数据库中的表越小,在它上面执行的查询也就会越快。因此,在创建表的时候,为了获得更好的性能,我们可以将表中字段的宽度设得尽可能小。
2. 使用连接(JOIN)来代替子查询(Sub-Queries)
MySQL从4.1开始支持SQL的子查询。这个技术可以使用SELECT语句来创建一个单列的查询结果,然后把这个结果作为过滤条件用在另一个查询中。
3、使用联合(UNION)来代替手动创建的临时表
MySQL从4.0的版本开始支持union查询,它可以把需要使用临时表的两条或更多的select查询合并的一个查询中。在客户端的查询会话结束的时候,临时表会被自动删除,从而保证数据库整齐、高效。
4、事务
尽管我们可以使用子查询(Sub-Queries)、连接(JOIN)和联合(UNION)来创建各种各样的查询,但不是所有的数据库操作都可以只用一条或少数几条SQL语句就可以完成的。更多的时候是需要用到一系列的语句来完成某种工作。但是在这种情况下,当这个语句块中的某一条语句运行出错的时候,整个语句块的操作就会变得不确定起来。设想一下,要把某个数据同时插入两个相关联的表中,可能会出现这样的情况:第一个表中成功更新后,数据库突然出现意外状况,造成第二个表中的操作没有完成,这样,就会造成数据的不完整,甚至会破坏数据库中的数据。要避免这种情况,就应该使用事务,它的作用是:要么语句块中每条语句都操作成功,要么都失败
5、锁定表
尽管事务是维护数据库完整性的一个非常好的方法,但却因为它的独占性,有时会影响数据库的性能,尤其是在很大的应用系统中。由于在事务执行的过程中,数据库将会被锁定,因此其它的用户请求只能暂时等待直到该事务结束。其实,有些情况下我们可以通过锁定表的方法来获得更好的性能。
6、使用外键
锁定表的方法可以维护数据的完整性,但是它却不能保证数据的关联性。这个时候我们就可以使用外键。
7、使用索引
索引是提高数据库性能的常用方法,它可以令数据库服务器以比没有索引快得多的速度检索特定的行,尤其是在查询语句当中包含有MAX(),MIN()和ORDERBY这些命令的时候,性能提高更为明显。
8、优化的查询语句
绝大多数情况下,使用索引可以提高查询的速度,但如果SQL语句使用不恰当的话,索引将无法发挥它应有的作用。
文章标题:mysql怎么优化最佳 mysql如何优化sql
当前网址:http://azwzsj.com/article/dogsecs.html