pythonrvs函数 python中rjust函数

如何在Python中实现这五类强大的概率分布

Python – 伯乐在线

创新互联公司是一家专注于网站设计制作、成都网站设计与策划设计,义乌网站建设哪家好?创新互联公司做网站,专注于网站建设10年,网设计领域的专业建站公司;建站业务涵盖:义乌等地区。义乌做网站价格咨询:13518219792

首页所有文章观点与动态基础知识系列教程实践项目工具与框架工具资源Python小组伯乐在线 Python - 伯乐在线 所有文章 实践项目 如何在Python中实现这五类强大的概率分布如何在Python中实现这五类强大的概率分布

2015/04/25 · 实践项目 · 概率分布

分享到: 12

本文由 伯乐在线 - feigao.me 翻译,Daetalus 校稿。未经许可,禁止转载!

英文出处:。欢迎加入翻译组。

R编程语言已经成为统计分析中的事实标准。但在这篇文章中,我将告诉你在Python中实现统计学概念会是如此容易。我要使用Python实现一些离散和连续的概率分布。虽然我不会讨论这些分布的数学细节,但我会以链接的方式给你一些学习这些统计学概念的好资料。在讨论这些概率分布之前,我想简单说说什么是随机变量(random variable)。随机变量是对一次试验结果的量化。

举个例子,一个表示抛硬币结果的随机变量可以表示成Python

X = {1 如果正面朝上,

2 如果反面朝上}

12X = {1 如果正面朝上,

2 如果反面朝上}

随机变量是一个变量,它取值于一组可能的值(离散或连续的),并服从某种随机性。随机变量的每个可能取值的都与一个概率相关联。随机变量的所有可能取值和与之相关联的概率就被称为概率分布(probability distributrion)。

我鼓励大家仔细研究一下scipy.stats模块。

概率分布有两种类型:离散(discrete)概率分布和连续(continuous)概率分布。

离散概率分布也称为概率质量函数(probability mass function)。离散概率分布的例子有伯努利分布(Bernoulli distribution)、二项分布(binomial distribution)、泊松分布(Poisson distribution)和几何分布(geometric distribution)等。

连续概率分布也称为概率密度函数(probability density function),它们是具有连续取值(例如一条实线上的值)的函数。正态分布(normal distribution)、指数分布(exponential distribution)和β分布(beta distribution)等都属于连续概率分布。

若想了解更多关于离散和连续随机变量的知识,你可以观看可汗学院关于概率分布的视频。

二项分布(Binomial Distribution)

服从二项分布的随机变量X表示在n个独立的是/非试验中成功的次数,其中每次试验的成功概率为p。

E(X) = np, Var(X) = np(1?p)

如果你想知道每个函数的原理,你可以在IPython笔记本中使用help file命令。 E(X)表示分布的期望或平均值。

键入stats.binom?了解二项分布函数binom的更多信息。

二项分布的例子:抛掷10次硬币,恰好两次正面朝上的概率是多少?

假设在该试验中正面朝上的概率为0.3,这意味着平均来说,我们可以期待有3次是硬币正面朝上的。我定义掷硬币的所有可能结果为k = np.arange(0,11):你可能观测到0次正面朝上、1次正面朝上,一直到10次正面朝上。我使用stats.binom.pmf计算每次观测的概率质量函数。它返回一个含有11个元素的列表(list),这些元素表示与每个观测相关联的概率值。

您可以使用.rvs函数模拟一个二项随机变量,其中参数size指定你要进行模拟的次数。我让Python返回10000个参数为n和p的二项式随机变量。我将输出这些随机变量的平均值和标准差,然后画出所有的随机变量的直方图。

泊松分布(Poisson Distribution)

一个服从泊松分布的随机变量X,表示在具有比率参数(rate parameter)λ的一段固定时间间隔内,事件发生的次数。参数λ告诉你该事件发生的比率。随机变量X的平均值和方差都是λ。

E(X) = λ, Var(X) = λ

泊松分布的例子:已知某路口发生事故的比率是每天2次,那么在此处一天内发生4次事故的概率是多少?

让我们考虑这个平均每天发生2起事故的例子。泊松分布的实现和二项分布有些类似,在泊松分布中我们需要指定比率参数。泊松分布的输出是一个数列,包含了发生0次、1次、2次,直到10次事故的概率。我用结果生成了以下图片。

你可以看到,事故次数的峰值在均值附近。平均来说,你可以预计事件发生的次数为λ。尝试不同的λ和n的值,然后看看分布的形状是怎么变化的。

现在我来模拟1000个服从泊松分布的随机变量。

正态分布(Normal Distribution)

正态分布是一种连续分布,其函数可以在实线上的任何地方取值。正态分布由两个参数描述:分布的平均值μ和方差σ2 。

E(X) = μ, Var(X) = σ2

正态分布的取值可以从负无穷到正无穷。你可以注意到,我用stats.norm.pdf得到正态分布的概率密度函数。

β分布(Beta Distribution)

β分布是一个取值在 [0, 1] 之间的连续分布,它由两个形态参数α和β的取值所刻画。

β分布的形状取决于α和β的值。贝叶斯分析中大量使用了β分布。

当你将参数α和β都设置为1时,该分布又被称为均匀分布(uniform distribution)。尝试不同的α和β取值,看看分布的形状是如何变化的。

指数分布(Exponential Distribution)

指数分布是一种连续概率分布,用于表示独立随机事件发生的时间间隔。比如旅客进入机场的时间间隔、打进客服中心电话的时间间隔、中文维基百科新条目出现的时间间隔等等。

我将参数λ设置为0.5,并将x的取值范围设置为 $[0, 15]$ 。

接着,我在指数分布下模拟1000个随机变量。scale参数表示λ的倒数。函数np.std中,参数ddof等于标准偏差除以 $n-1$ 的值。

结语(Conclusion)

概率分布就像盖房子的蓝图,而随机变量是对试验事件的总结。我建议你去看看哈佛大学数据科学课程的讲座,Joe Blitzstein教授给了一份摘要,包含了你所需要了解的关于统计模型和分布的全部。

深入理解Python reduce函数

例如上面的例子,实现一个整形集合的累加。假设lst = [1,2,3,4,5],实现累加的方式有很多:

第一种:用sum函数。

sum(lst)

第二种:循环方式。

def customer_sum(lst):

result = 0

for x in lst:

result+=x

return result

def customer_sum(lst):

result = 0

while lst:

temp = lst.pop(0)

result+=temp

return result

if name ==" main ":

lst = [1,2,3,4,5]

print customer_sum(lst)

第三种:递推求和

def add(lst,result):

if lst:

temp = lst.pop(0)

temp+=result

return add(lst,temp)

else:

return result

if name ==" main ":

lst = [1,2,3,4,5]

print add(lst,0)

第四种:reduce方式

lst = [1,2,3,4,5]

print reduce(lambda x,y:x+y,lst)

lst = [1,2,3,4,5]

print reduce(lambda x,y:x+y,lst,0)

def add(x,y):

return x+y

print reduce(add, lst)

def add(x,y):

return x+y

print reduce(add, lst,0)

有一个序列集合,例如[1,1,2,3,2,3,3,5,6,7,7,6,5,5,5],统计这个集合所有键的重复个数,例如1出现了两次,2出现了两次等。大致的思路就是用字典存储,元素就是字典的key,出现的次数就是字典的value。方法依然很多

第一种:for循环判断

def statistics(lst):

dic = {}

for k in lst:

if not k in dic:

dic[k] = 1

else:

dic[k] +=1

return dic

lst = [1,1,2,3,2,3,3,5,6,7,7,6,5,5,5]

print(statistics(lst))

第二种:比较取巧的,先把列表用set方式去重,然后用列表的count方法

def statistics2(lst):

m = set(lst)

dic = {}

for x in m:

dic[x] = lst.count(x)

lst = [1,1,2,3,2,3,3,5,6,7,7,6,5,5,5]

print statistics2(lst)

第三种:用reduce方式

def statistics(dic,k):

if not k in dic:

dic[k] = 1

else:

dic[k] +=1

return dic

lst = [1,1,2,3,2,3,3,5,6,7,7,6,5,5,5]

print reduce(statistics,lst,{})

或者

d = {}

d.extend(lst)

print reduce(statistics,d)

通过上面的例子发现,凡是要对一个集合进行操作的,并且要有一个统计结果的,能够用循环或者递归方式解决的问题,一般情况下都可以用reduce方式实现。

python中round函数的用法

round函数python:

这个函数相当于调去里面的一个函数,有一个数组,从中里面调取一个数据。简单的说,round是使用四舍五入对小数进行位数控制的函数,round(a,b),a参数是小数,b是小数点后保留的位数。实际使用需要考虑的python2和python3版本的差异与小数精度的问题。

ound函数的使用用法

根据Excel的帮助得知,round函数就是返回一个数值,该数值是按照指定的小数位数进行四舍五入运算的结果。

round函数的语法是:ROUND(number,num_digits),即:Round(数值,保留的小数位数)

Number:需要进行四舍五入的数字。

Num_digits:指定的位数,按此位数进行四舍五入。

其中,如果num_digits大于0,则四舍五入到指定的小数位。

如果num_digits等于0,则四舍五入到最接近的整数。

如果num_digits小于0,则在小数点左侧进行四舍五入。


当前名称:pythonrvs函数 python中rjust函数
转载源于:http://azwzsj.com/article/dogeocc.html