Pytorch中accuracy和loss的计算知识点总结-创新互联
这几天关于accuracy和loss的计算有一些疑惑,原来是自己还没有弄清楚。
创新互联公司专注于企业营销型网站、网站重做改版、广西网站定制设计、自适应品牌网站建设、H5开发、商城网站定制开发、集团公司官网建设、成都外贸网站制作、高端网站制作、响应式网页设计等建站业务,价格优惠性价比高,为广西等各大城市提供网站开发制作服务。给出实例
def train(train_loader, model, criteon, optimizer, epoch): train_loss = 0 train_acc = 0 num_correct= 0 for step, (x,y) in enumerate(train_loader): # x: [b, 3, 224, 224], y: [b] x, y = x.to(device), y.to(device) model.train() logits = model(x) loss = criteon(logits, y) optimizer.zero_grad() loss.backward() optimizer.step() train_loss += float(loss.item()) train_losses.append(train_loss) pred = logits.argmax(dim=1) num_correct += torch.eq(pred, y).sum().float().item() logger.info("Train Epoch: {}\t Loss: {:.6f}\t Acc: {:.6f}".format(epoch,train_loss/len(train_loader),num_correct/len(train_loader.dataset))) return num_correct/len(train_loader.dataset), train_loss/len(train_loader)
新闻名称:Pytorch中accuracy和loss的计算知识点总结-创新互联
当前路径:http://azwzsj.com/article/doecsd.html