关于python实现内置函数的信息

python 内置排序函数使用

python内置关于排序的工具主要有两个一个是列表自带的 sort() 方法,另外一个是 sorted() 函数。Python 列表内置方法可以直接修改列表。而 sorted() 内置函数从一个可迭代对象(列表,元组等都可以)构建一个新的排序列表。其函数原型分别如下:

创新互联建站主营巴青网站建设的网络公司,主营网站建设方案,重庆APP开发,巴青h5微信小程序搭建,巴青网站营销推广欢迎巴青等地区企业咨询

对列表进行默认排序

从函数原型来看,可以看到两者都具有两个可选参数,它们都必须指定为关键字参数。

key 指定带有单个参数的函数,用于从 iterable 的每个元素中提取用于比较的键 (例如 key=str.lower)。默认值为 None (直接比较元素)。 key 形参的值应该是个函数(或其他可调用对象),它接受一个参数并返回一个用于排序的键。

假设有其他类型的变量,比如一个自定义的类或者列表中又是一个列表。以官网例子为例有这样一个列表,其元素为元组,

可以用以下方式按照年龄排序

类似的有自定义类

可以用如下方式进行排序

也可以显示定义一个函数,且只有一个参数,返回用于排序的键,比如

总之就是定义一个函数返回一个用于排序的键,可以用lambda函数或者 def 定义都可以。

上面实现的简单函数实际就是实现了返回一个有序结构的第 n 的元素,或者某个类中的某个属性,因此 Python 提供了便利功能,使访问器功能更容易,更快捷。operator 模块有 itemgetter() 、 attrgetter() 函数。分别完成返回第 n 个元素,某个属性功能。上面的排序可以用如下方式进行实现

在python2中,sort有一个 cmp 参数,即用一个函数来自定义比较,在python3中这种方式被取消。为了继承类似的用法,在 Python 3.2 中, functools.cmp_to_key() 函数被添加到标准库中的 functools 模块中。

这种作用先定义如何比较两个变量,以上面的学生列表按照年龄排序为例

这种做法自定义比较函数接收两个形参,返回比较结果(bool),而新式方法接受一个参数,返回的是比较的键。

假设有字典 d = {'b':2, 'a':1,'c':8,'d':4} ,则可以通过以下方式对字典按照键和值进行排序

Python中冷门但非常好用的内置函数

Python中有许多内置函数,不像print、len那么广为人知,但它们的功能却异常强大,用好了可以大大提高代码效率,同时提升代码的简洁度,增强可阅读性

Counter

collections在python官方文档中的解释是High-performance container datatypes,直接的中文翻译解释高性能容量数据类型。这个模块实现了特定目标的容器,以提供Python标准内建容器 dict , list , set , 和 tuple 的替代选择。在python3.10.1中它总共包含以下几种数据类型:

容器名简介

namedtuple() 创建命名元组子类的工厂函数

deque 类似列表(list)的容器,实现了在两端快速添加(append)和弹出(pop)

ChainMap 类似字典(dict)的容器类,将多个映射集合到一个视图里面

Counter 字典的子类,提供了可哈希对象的计数功能

OrderedDict 字典的子类,保存了他们被添加的顺序

defaultdict 字典的子类,提供了一个工厂函数,为字典查询提供一个默认值

UserDict 封装了字典对象,简化了字典子类化

UserList 封装了列表对象,简化了列表子类化

UserString 封装了字符串对象,简化了字符串子类化

其中Counter中文意思是计数器,也就是我们常用于统计的一种数据类型,在使用Counter之后可以让我们的代码更加简单易读。Counter类继承dict类,所以它能使用dict类里面的方法

举例

#统计词频

fruits = ['apple', 'peach', 'apple', 'lemon', 'peach', 'peach']

result = {}

for fruit in fruits:

if not result.get(fruit):

result[fruit] = 1

else:

result[fruit] += 1

print(result)

#{'apple': 2, 'peach': 3, 'lemon': 1}下面我们看用Counter怎么实现:

from collections import Counter

fruits = ['apple', 'peach', 'apple', 'lemon', 'peach', 'peach']

c = Counter(fruits)

print(dict(c))

#{'apple': 2, 'peach': 3, 'lemon': 1}显然代码更加简单了,也更容易阅读和维护了。

elements()

返回一个迭代器,其中每个元素将重复出现计数值所指定次。元素会按首次出现的顺序返回。如果一个元素的计数值小于1,elements()将会忽略它。

c = Counter(a=4, b=2, c=0, d=-2)

sorted(c.elements())

['a', 'a', 'a', 'a', 'b', 'b']most_common([n])

返回一个列表,其中包含n个最常见的元素及出现次数,按常见程度由高到低排序。如果n被省略或为None,most_common()将返回计数器中的所有元素。计数值相等的元素按首次出现的顺序排序:

Counter('abracadabra').most_common(3)

[('a', 5), ('b', 2), ('r', 2)]这两个方法是Counter中最常用的方法,其他方法可以参考 python3.10.1官方文档

实战

Leetcode 1002.查找共用字符

给你一个字符串数组words,请你找出所有在words的每个字符串中都出现的共用字符(包括重复字符),并以数组形式返回。你可以按任意顺序返回答案。

输入:words = ["bella", "label", "roller"]

输出:["e", "l", "l"]

输入:words = ["cool", "lock", "cook"]

输出:["c", "o"]看到统计字符,典型的可以用Counter完美解决。这道题是找出字符串列表里面每个元素都包含的字符,首先可以用Counter计算出每个元素每个字符出现的次数,依次取交集最后得出所有元素共同存在的字符,然后利用elements输出共用字符出现的次数

class Solution:

def commonChars(self, words: List[str]) - List[str]:

from collections import Counter

ans = Counter(words[0])

for i in words[1:]:

ans = Counter(i)

return list(ans.elements())提交一下,发现83个测试用例耗时48ms,速度还是不错的

sorted

在处理数据过程中,我们经常会用到排序操作,比如将列表、字典、元组里面的元素正/倒排序。这时候就需要用到sorted(),它可以对任何可迭代对象进行排序,并返回列表

对列表升序操作:

a = sorted([2, 4, 3, 7, 1, 9])

print(a)

# 输出:[1, 2, 3, 4, 7, 9]对元组倒序操作:

sorted((4,1,9,6),reverse=True)

print(a)

# 输出:[9, 6, 4, 1]使用参数:key,根据自定义规则,按字符串长度来排序:

fruits = ['apple', 'watermelon', 'pear', 'banana']

a = sorted(fruits, key = lambda x : len(x))

print(a)

# 输出:['pear', 'apple', 'banana', 'watermelon']all

all() 函数用于判断给定的可迭代参数iterable中的所有元素是否都为 TRUE,如果是返回 True,否则返回 False。元素除了是 0、空、None、False外都算True。注意:空元组、空列表返回值为True。

all(['a', 'b', 'c', 'd']) # 列表list,元素都不为空或0

True

all(['a', 'b', '', 'd']) # 列表list,存在一个为空的元素

False

all([0, 1,2, 3]) # 列表list,存在一个为0的元素

False

all(('a', 'b', 'c', 'd')) # 元组tuple,元素都不为空或0

True

all(('a', 'b', '', 'd')) # 元组tuple,存在一个为空的元素

False

all((0, 1, 2, 3)) # 元组tuple,存在一个为0的元素

False

all([]) # 空列表

True

all(()) # 空元组

Trueany函数正好和all函数相反:判断一个tuple或者list是否全为空,0,False。如果全为空,0,False,则返回False;如果不全为空,则返回True。

F-strings

在python3.6.2版本中,PEP 498提出一种新型字符串格式化机制,被称为 “字符串插值” 或者更常见的一种称呼是F-strings,F-strings提供了一种明确且方便的方式将python表达式嵌入到字符串中来进行格式化:

s1='Hello'

s2='World'

print(f'{s1} {s2}!')

# Hello World!在F-strings中我们也可以执行函数:

def power(x):

return x*x

x=4

print(f'{x} * {x} = {power(x)}')

# 4 * 4 = 16而且F-strings的运行速度很快,比传统的%-string和str.format()这两种格式化方法都快得多,书写起来也更加简单。

本文主要讲解了python几种冷门但好用的函数,更多内容以后会陆陆续续更新~

Python 之内置函数:filter、map、reduce、zip、enumerate

这几个函数在 Python 里面被称为高阶函数,本文主要学习它们的用法。

filter 函数原型如下:

第一个参数是判断函数(返回结果需要是 True 或者 False),第二个为序列,该函数将对 iterable 序列依次执行 function(item) 操作,返回结果是过滤之后结果组成的序列。

简单记忆:对序列中的元素进行筛选,获取符合条件的序列。

返回结果为: ,使用 list 函数可以输入序列内容。

map 函数原型如下:

该函数运行之后生成一个 list,第一个参数是函数、第二个参数是一个或多个序列;

下述代码是一个简单的测试案例:

上述代码运行完毕,得到的结果是: 。使用 print(list(my_new_list)) 可以得到结果。

map 函数的第一个参数,可以有多个参数,当这种情况出现后,后面的第二个参数需要是多个序列。

map 函数解决的问题:

reduce 函数原型如下:

第一个参数是函数,第二个参数是序列,返回计算结果之后的值。该函数价值在于滚动计算应用于列表中的连续值。

测试代码如下:

最终的结果是 6,如果设置第三个参数为 4,可以运行代码查看结果,最后得到的结论是,第三个参数表示初始值,即累加操作初始的数值。

简单记忆:对序列内所有元素进行累计操作。

zip 函数原型如下:

zip 函数将可迭代的对象作为参数,将对象中对应的元素打包成一个个元组,然后返回由这些元组组成的列表。

如果各个迭代器的元素个数不一样,则返回列表长度与最短的对象相同,利用星号( * )操作符,可以将元组解压为列表。

测试代码如下:

展示如何利用 * 操作符:

输出结果如下:

简单记忆:zip 的功能是映射多个容器的相似索引,可以方便用于来构造字典。

enumerate 函数原型如下:

参数说明:

该函数用于将一个可遍历的数据对象组合为一个索引序列,同时列出数据和数据下标,一般用在 for 循环当中。

测试代码如下:

返回结果为: 。

本文涉及的函数可以与 lambda 表达式进行结合,能大幅度提高编码效率。最好的学习资料永远是官方手册

python基础:内置函数、方法、转义字符大全

在写python程序时,常能用到一些函数和方法,总结一下,保存起来,方便查询。

一、内置函数

# abs()获取数字绝对值

# chr(i)数字转换为字符类型

# divmod() 获取两个数值的商和余数

# enumerate() 将可遍历序列组合为索引序列

# float()转换为浮点数

# format() 格式化字符串

# int()转换为整数 

# input() 接受用户输入内容

# len() 计算元素个数

# max() 返回最大值

# min() 返回最小值

# math.ceil() 返回指定数值的上舍整数

# open()打开文件并返回文件对象

# pow() 幂运算

# print()打印输出 

# range() 生成器

# reversed()反转所有元素

# round()四舍五入求值

# sorted()对可迭代对象进行排序 

# str() 转换为字符串

# sum() 求和

# set() 创建集合

# tuple() 将序列转换为元组

# zip()将可迭代对象打包成元组

二、方法

# append() 添加列表元素

# capitalize()首字母转换为大写 

# count()字符出现次数

# close() 关闭文件

# decode() 解码字符串

# dict.keys() 获取字典所有的键

# find()字符串首次出现的索引

# f.read() 读取文件内容

# dict.update()更新字典

# dict.items() 获取字典键/值对

# dict.get() 返回指定键的值

# encode() 编码字符串

# list.sort() 排序列表元素

# index() 元素首次出现的索引

# isdigit() 判断字符串是否只由数字组成

# isupper() 是否所有字母都为大写

# isnum() 判断字符串是否由字母和数字组成

# islower() 是否所有字母都为小写

# isdecimal() 检查字符串是否只包含十进制字符

# isalpha() 检测字符串是否为纯字母

# random.shuffle()随机排序

# random.sample()返回无重复随机数列表

# random.choice() 返回一个随机元素

# random.randint() 生成指定范围的随机整数

# random.randrange() 生成指定范围的指定递增基数随机整数

# pop() 删除列表中的元素

# remove()删除列表中的指定元素

# strip()去除空格

# lstrip()去除左侧空格

# rstrip() 去除右侧空格

# readline() 读取单行内容

# root.after() Tkinter中等待一段时间后再执行命令

# str.isnumeric() 验证字符串是否为数字(适用于Unicode)

# split()分割字符串

# ord() 将字符转换为整数

# replace() 字符串替换

# ljust() 左对齐填充

# rjust() 左对齐填充

# readlines() 读取所有行内容

# datetime.datetime.now() 返回指定时区的本地日期时间

# datetime.datetime.today() 获取当前本地日期的date对象

# datetime.utcnow() 返回当前UTC时间的datetime对象

# time.strptime()把时间字符串解析为元组

# time.time()返回当前时间的时间戳

# time.sleep()暂停指定秒数

# time.strftime() 返回指定格式的日期字符串

# time.mktime() 接收时间元组并返回时间戳

# os.getcwd() 获取当前工作目录

# os.listdir() 获取指定路径下的目录和文件列表

# os.makedirs() 递归创建目录

# os.rename() 重命名目录或文件

# os.path.exists() 判断路径是否存在

# upper() 全部转换为大写字母

# lower()  全部转换为小写字母

# sys.stdout.write() 标准输出打印

# sys.stdout.flush()刷新输出 

# shutil.copy() 复制单个文件到另一文件或目录

# write() 写入文件内容

# winsound.Beep() 打开电脑扬声器

# zfill() 在字符串前面填充0

三、循环语句

# break终止当前循环

# continue 终止本循环进入下一次循环

# with open() as file 以with语句打开文件(数据保存)

四、转义字符

\ 行尾续行符

\' 单引号 

\'' 双引号

\a 响铃

\e 转义

\n 换行

\t 横向制表符

\f 换页

\xyy 十六进制yy代表的字符

\\反斜杠符号

\b 退格

\000 空

\v 纵向制表符

\r 回车

\0yy 八进制yy代表的字符

\other 其他的字符以普通格式输出


文章题目:关于python实现内置函数的信息
链接分享:http://azwzsj.com/article/dodceci.html