python如何学习requests爬取网页图片-创新互联
这篇文章将为大家详细讲解有关python如何学习requests爬取网页图片,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。
创新互联公司,是一家集策划、设计、技术开发一体的专业互联网产品服务公司,致力于为企业信息化提供驱动力。技术团队10多年来致力于为客户提供企业网站定制,手机网站开发。先后服务了千余家客户,包括各类中小企业、高校、政府。 创新互联公司将利用公司在过去10多年的资源积累,力争为客户打造真正革命性的口碑产品!前言
最近想做一个练练的小游戏给家里的小朋友玩儿,但是苦于选取素材,然后在一个巨佬的博客里找了灵感,就借用一下粉丝的头像试试爬取网页里的图片吧!
完成总目标:
爬取粉丝头像作为素材,完成一个连连看的小游戏
故本文分为两部分内容:
1、爬取素材部分;
2、利用素材完成连连看小游戏部分(链接)
实现目标:
通过爬虫实现对粉丝头像的爬取并顺序排列存储,作为游戏设计的素材,其中爬取的头像一部分是使用了CSDN的默认头像,存在重复情况,所以还需要去重以得到完整且不重复的图像集
一、准备
1、python环境
2、涉及到的python库需要pip install 包名
安装
二、代码编写
1.爬取内容
(1)所需要的库
import requestsimport json
(2)得到请求地址
url = 'https://blog.csdn.net//phoenix/web/v1/fans/list?page=1&pageSize=40&blogUsername=weixin_45386875' #关注我的部分请求地址#url = 'https://blog.csdn.net//phoenix/web/v1/follow/list?page=1&pageSize=40&blogUsername=weixin_45386875' #我关注的部分请求地址
请求地址获取方法:
右击所要爬取部分页面,点击 审查元素,找到图中文件
注: 页面选到“TA的粉丝(13)”部分才能出现,如果点击Network什么也没有,则需要刷新页面就会出现页面内容了)
(3)带上请求头发送请求,做一些简单伪装
header = { 'User-Agent' : 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/78.0.3904.108 Safari/537.36', 'Cookie' : 'uuid_tt_dd=10_30826311340-1612520858912-361156; Hm_ct_6bcd52f51e9b3dce32bec4a3997715ac=6525*1*10_30826311340-1612520858912-361156!5744*1*weixin_45386875!1788*1*PC_VC; UN=weixin_45386875; p_uid=U010000; ssxmod_itna=Qui=DKiI3hkbG=DXDnD+r8h9eD53ecxPPit5bP1ODlOaYxA5D8D6DQeGTbcW1AoWGATqFYKmEWiH5/gbO4FpjQGcxLbbYx0aDbqGkqnU40rDzuQGuD0KGRDD4GEDCHHDIxGUBuDeKDR8qDg7gQcCM=DbSdDKqDHR+4FbG4oD8PdS0p=C7Gt3AuQ3DmtSije3r424rQ+iPqWzPDA3DK6jiD==; ssxmod_itna2=Qui=DKiI3hkbG=DXDnD+r8h9eD53ecxPPit5bP1D66Ii40vah403pFcXW0D6QALW==0tWLGtzKPUA76xoU10vpqD6AoOqs1R=Db=3olozYp0wVxUS0r/GeZCqzVezFQc8dZon7efYcr=1nhNr6nWKcTqqaDQYcwYSA+hNaqem=WWuDuDQ/+1PGEsN=atvS7WDp07vFuFDherg0AP0KFw0ea6kcTtK2rh/fy=/De0n1FNk+ONYxCXr=QrdTj6gxCuNNWXvp1IDdl2Ckjc=N/cqV6SmHZIZIuOEqml=dHMroMFDvdMVr8afnyQ+sbGPCbt3xdD07tAdRD7uDQ0gT=Bh7OYblbtYQFDDLxD2tGDD===; UserName=weixin_45386875; UserInfo=9863b829527c49a3ba1622396deaa7d9; UserToken=9863b829527c49a3ba1622396deaa7d9; UserNick=ryc875327878; AU=01F; BT=1612846374580; Hm_up_6bcd52f51e9b3dce32bec4a3997715ac=%7B%22uid_%22%3A%7B%22value%22%3A%22weixin_45386875%22%2C%22scope%22%3A1%7D%2C%22islogin%22%3A%7B%22value%22%3A%221%22%2C%22scope%22%3A1%7D%2C%22isonline%22%3A%7B%22value%22%3A%221%22%2C%22scope%22%3A1%7D%2C%22isvip%22%3A%7B%22value%22%3A%220%22%2C%22scope%22%3A1%7D%7D; __gads=ID=94978f740e79c9e5-22c918ed05c600ea:T=1613266189:RT=1613266189:S=ALNI_Mbwb8ad5kdYjogF7yImerVAzKaJuQ; dc_session_id=10_1613272889543.735028; announcement-new=%7B%22isLogin%22%3Atrue%2C%22announcementUrl%22%3A%22https%3A%2F%2Fblog.csdn.net%2Fblogdevteam%2Farticle%2Fdetails%2F112280974%3Futm_source%3Dgonggao_0107%22%2C%22announcementCount%22%3A0%2C%22announcementExpire%22%3A3600000%7D; dc_sid=3784575ebe1e9d08a29b0e3fc3621328; c_first_ref=default; c_first_page=https%3A//www.csdn.net/; c_segment=4; Hm_lvt_6bcd52f51e9b3dce32bec4a3997715ac=1613222907,1613266055,1613268241,1613273899; TY_SESSION_ID=82f0aa61-9b28-49b2-a854-b18414426735; c_pref=; c_ref=https%3A//www.csdn.net/; c_page_id=default; dc_tos=qoi2fq; log_Id_pv=925; Hm_lpvt_6bcd52f51e9b3dce32bec4a3997715ac=1613274327; log_Id_view=905; log_Id_click=658' }
获取请求头的方法:
(4)向网页发送请求
try: data = requests.get(url,headers = header).text data_dist = json.loads(data) except: print('爬取失败') exit ()
2.保存所需图片并去重
定义一些函数备用
#保存文件def save_imag(file_name,img_url): request.urlretrieve(url=img_url,filename='D:\\ryc\python_learning\\10_linkup\\fan_avatar\\'+file_name)
#删除一个文件夹下的所有所有文件def del_file(path): ls = os.listdir(path) for i in ls: c_path = os.path.join(path, i) if os.path.isdir(c_path):#如果是文件夹那么递归调用一下 del_file(c_path) else: #如果是一个文件那么直接删除 os.remove(c_path) print ('文件已经清空完成')
#图像去重def compare_images(pic1,pic2): image1 = Image.open(pic1) image2 = Image.open(pic2) histogram1 = image1.histogram() histogram2 = image2.histogram() differ = math.sqrt(reduce(operator.add, list(map(lambda a,b: (a-b)**2,histogram1, histogram2)))/len(histogram1)) print('differ:',differ) if differ == 0: return 'same' else: return 'diff'
#删除指定位置的图像def del_avatar(path): if os.path.exists(path): # 如果文件存在 os.remove(path) else: print('no such file:%s'%(path)) # 则返回文件不存在
#先清空一下文件夹 del_file('D:\\ryc\python_learning\\10_linkup\\fan_avatar') index = 0 # i 是爬取列表的索引号; index 是保存的图片的索引号 for i in range(0,len(fan_list)): fan_username = fan_list[i]['nickname'] #print('fans_user%s:'%(i+1),fan_username) fan_avatar_url = fan_list[i]['userAvatar'] #print('fans_avatar_url%s:'%(i+1),fan_avatar_url) save_imag('fans_avatar%s.jpg'%(index+1),fan_avatar_url) #print('----------------save_image--fans_avatar%s.jpg'%(index+1)) #图片去重 for j in range(0,index): if index != j : comp_res = compare_images('./fan_avatar/fans_avatar%s.jpg'%(index+1),'./fan_avatar/fans_avatar%s.jpg'%(j+1)) print('--------compare_images:--------'+'./fan_avatar/fans_avatar%s.jpg'%(index+1) + '------with---' + './fan_avatar/fans_avatar%s.jpg'%(j+1)) print('comp_res:',comp_res) if comp_res == 'same': del_avatar('D:\\ryc\python_learning\\10_linkup\\fan_avatar\\fans_avatar%s.jpg'%(index+1)) print('D:\\ryc\python_learning\\10_linkup\\fan_avatar\\fans_avatar%s.jpg'%(index+1)) index = index - 1 break index = index + 1
3、调用
if __name__ == "__main__": spider_fanavatar()
三、完整代码
# 爬取网页图片import requestsfrom urllib import requestimport jsonfrom PIL import Imageimport osimport mathimport operatorfrom functools import reduce#保存文件def save_imag(file_name,img_url): request.urlretrieve(url=img_url,filename='D:\\ryc\python_learning\\10_linkup\\fan_avatar\\'+file_name)#爬取粉丝的头像def spider_fanavatar(): url = 'https://blog.csdn.net//phoenix/web/v1/fans/list?page=1&pageSize=40&blogUsername=weixin_45386875' #关注我的部分请求地址 #url = 'https://blog.csdn.net//phoenix/web/v1/follow/list?page=1&pageSize=40&blogUsername=weixin_45386875' #我关注的部分请求地址 header = { 'User-Agent' : 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/78.0.3904.108 Safari/537.36', 'Cookie' : 'uuid_tt_dd=10_30826311340-1612520858912-361156; Hm_ct_6bcd52f51e9b3dce32bec4a3997715ac=6525*1*10_30826311340-1612520858912-361156!5744*1*weixin_45386875!1788*1*PC_VC; UN=weixin_45386875; p_uid=U010000; ssxmod_itna=Qui=DKiI3hkbG=DXDnD+r8h9eD53ecxPPit5bP1ODlOaYxA5D8D6DQeGTbcW1AoWGATqFYKmEWiH5/gbO4FpjQGcxLbbYx0aDbqGkqnU40rDzuQGuD0KGRDD4GEDCHHDIxGUBuDeKDR8qDg7gQcCM=DbSdDKqDHR+4FbG4oD8PdS0p=C7Gt3AuQ3DmtSije3r424rQ+iPqWzPDA3DK6jiD==; ssxmod_itna2=Qui=DKiI3hkbG=DXDnD+r8h9eD53ecxPPit5bP1D66Ii40vah403pFcXW0D6QALW==0tWLGtzKPUA76xoU10vpqD6AoOqs1R=Db=3olozYp0wVxUS0r/GeZCqzVezFQc8dZon7efYcr=1nhNr6nWKcTqqaDQYcwYSA+hNaqem=WWuDuDQ/+1PGEsN=atvS7WDp07vFuFDherg0AP0KFw0ea6kcTtK2rh/fy=/De0n1FNk+ONYxCXr=QrdTj6gxCuNNWXvp1IDdl2Ckjc=N/cqV6SmHZIZIuOEqml=dHMroMFDvdMVr8afnyQ+sbGPCbt3xdD07tAdRD7uDQ0gT=Bh7OYblbtYQFDDLxD2tGDD===; UserName=weixin_45386875; UserInfo=9863b829527c49a3ba1622396deaa7d9; UserToken=9863b829527c49a3ba1622396deaa7d9; UserNick=ryc875327878; AU=01F; BT=1612846374580; Hm_up_6bcd52f51e9b3dce32bec4a3997715ac=%7B%22uid_%22%3A%7B%22value%22%3A%22weixin_45386875%22%2C%22scope%22%3A1%7D%2C%22islogin%22%3A%7B%22value%22%3A%221%22%2C%22scope%22%3A1%7D%2C%22isonline%22%3A%7B%22value%22%3A%221%22%2C%22scope%22%3A1%7D%2C%22isvip%22%3A%7B%22value%22%3A%220%22%2C%22scope%22%3A1%7D%7D; __gads=ID=94978f740e79c9e5-22c918ed05c600ea:T=1613266189:RT=1613266189:S=ALNI_Mbwb8ad5kdYjogF7yImerVAzKaJuQ; dc_session_id=10_1613272889543.735028; announcement-new=%7B%22isLogin%22%3Atrue%2C%22announcementUrl%22%3A%22https%3A%2F%2Fblog.csdn.net%2Fblogdevteam%2Farticle%2Fdetails%2F112280974%3Futm_source%3Dgonggao_0107%22%2C%22announcementCount%22%3A0%2C%22announcementExpire%22%3A3600000%7D; dc_sid=3784575ebe1e9d08a29b0e3fc3621328; c_first_ref=default; c_first_page=https%3A//www.csdn.net/; c_segment=4; Hm_lvt_6bcd52f51e9b3dce32bec4a3997715ac=1613222907,1613266055,1613268241,1613273899; TY_SESSION_ID=82f0aa61-9b28-49b2-a854-b18414426735; c_pref=; c_ref=https%3A//www.csdn.net/; c_page_id=default; dc_tos=qoi2fq; log_Id_pv=925; Hm_lpvt_6bcd52f51e9b3dce32bec4a3997715ac=1613274327; log_Id_view=905; log_Id_click=658' } try: data = requests.get(url,headers = header).text #得到返回的字符串 data_dist = json.loads(data) #将字符串转为字典格式 except: print('爬取失败') exit () fan_list = data_dist['data']['list'] #提取所需内容 #先清空一下文件夹 del_file('D:\\ryc\python_learning\\10_linkup\\fan_avatar') index = 0 # i 是爬取列表的索引号; index 是保存的图片的索引号 for i in range(0,len(fan_list)): fan_username = fan_list[i]['nickname'] #print('fans_user%s:'%(i+1),fan_username) fan_avatar_url = fan_list[i]['userAvatar'] #print('fans_avatar_url%s:'%(i+1),fan_avatar_url) save_imag('fans_avatar%s.jpg'%(index+1),fan_avatar_url) #print('----------------save_image--fans_avatar%s.jpg'%(index+1)) #图片去重 for j in range(0,index): if index != j : comp_res = compare_images('./fan_avatar/fans_avatar%s.jpg'%(index+1),'./fan_avatar/fans_avatar%s.jpg'%(j+1)) print('--------compare_images:--------'+'./fan_avatar/fans_avatar%s.jpg'%(index+1) + '------with---' + './fan_avatar/fans_avatar%s.jpg'%(j+1)) print('comp_res:',comp_res) if comp_res == 'same': del_avatar('D:\\ryc\python_learning\\10_linkup\\fan_avatar\\fans_avatar%s.jpg'%(index+1)) print('D:\\ryc\python_learning\\10_linkup\\fan_avatar\\fans_avatar%s.jpg'%(index+1)) index = index - 1 break index = index + 1 #图像去重def compare_images(pic1,pic2): image1 = Image.open(pic1) image2 = Image.open(pic2) histogram1 = image1.histogram() histogram2 = image2.histogram() differ = math.sqrt(reduce(operator.add, list(map(lambda a,b: (a-b)**2,histogram1, histogram2)))/len(histogram1)) print('differ:',differ) if differ == 0: return 'same' else: return 'diff' #删除指定位置的图像def del_avatar(path): if os.path.exists(path): # 如果文件存在 os.remove(path) else: print('no such file:%s'%(path)) # 则返回文件不存在#删除一个文件夹下的所有所有文件def del_file(path): ls = os.listdir(path) for i in ls: c_path = os.path.join(path, i) if os.path.isdir(c_path):#如果是文件夹那么递归调用一下 del_file(c_path) else: #如果是一个文件那么直接删除 os.remove(c_path) print ('文件已经清空完成')if __name__ == "__main__": spider_fanavatar()
最后
第一部分内容就到这里,第二部分内容将在下一篇文章完成,感兴趣的小伙伴可以关注我,然后去看下一片文章哦!
都读到这里了,各位亲爱的读者留下你们宝贵的赞和评论吧,这将是我继续前进的坚定动力!!!
关于“python如何学习requests爬取网页图片”这篇文章就分享到这里了,希望以上内容可以对大家有一定的帮助,使各位可以学到更多知识,如果觉得文章不错,请把它分享出去让更多的人看到。
本文题目:python如何学习requests爬取网页图片-创新互联
网页地址:http://azwzsj.com/article/dgpedh.html