Tensorflow实现神经网络拟合线性回归-创新互联

Tensorflow实现神经网络拟合线性回归?相信很多没有经验的人对此束手无策,为此本文总结了问题出现的原因和解决方法,通过这篇文章希望你能解决这个问题。

成都创新互联公司专业为企业提供临安网站建设、临安做网站、临安网站设计、临安网站制作等企业网站建设、网页设计与制作、临安企业网站模板建站服务,十载临安做网站经验,不只是建网站,更提供有价值的思路和整体网络服务。

一、利用简单的一层神经网络拟合一个函数 y = x^2 ,其中加入部分噪声作为偏置值防止拟合曲线过拟合

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
 
# 生成-0.5到0.5间均匀发布的200个点,将数据变为二维,200行一列的数据
x_data = np.linspace(-0.5, 0.5, 200)[:, np.newaxis]
 
# 生成一些噪音数据
noise = np.random.normal(0, 0.02, x_data.shape)
 
# 定义y与x的关系
y_data = np.square(x_data) + noise
 
# 定义两个占位符
x = tf.placeholder(tf.float32, [None, 1]) # 形状为n行1列,同x_data的shape
y = tf.placeholder(tf.float32, [None, 1])
 
# 定义神经网络
 
# 定义中间层,因为每个x是一维,所以只需1个神经元,定义中间层的连接神经元是10
# 矩阵:[a, b]×[b, c] = [a, c] 
L1_weights = tf.Variable(tf.random_normal([1, 10])) 
L1_bias = tf.Variable(tf.zeros([1, 10]))
L1_weights_bias = tf.matmul(x, L1_weights) + L1_bias
L1 = tf.nn.tanh(L1_weights_bias)
 
# 定义输出层,每个x只有一个神经元
L2_weights = tf.Variable(tf.random_normal([10, 1]))
L2_bias = tf.Variable(tf.zeros([1, 1]))
L2_weights_bias = tf.matmul(L1, L2_weights) + L2_bias
L2 = tf.nn.tanh(L2_weights_bias)
 
# 定义损失函数
loss = tf.reduce_mean(tf.square(y - L2))
 
# 梯度下降最小化损失函数
optimizer = tf.train.GradientDescentOptimizer(0.1)
 
train_step = optimizer.minimize(loss)
 
# 全局变量初始化
init = tf.global_variables_initializer()
 
# 定义会话
with tf.Session() as sess:
 sess.run(init)
 for _ in range(2000):
  sess.run(train_step, feed_dict={x:x_data, y:y_data})
  
 # 获取预测值
 predict = sess.run(L2, feed_dict={x:x_data})
 
 # 画图
 plt.figure()
 # 画出散点
 plt.scatter(x_data, y_data)
 # 画出拟合的曲线
 plt.plot(x_data, predict)
 
 plt.show()

二、代码运行效果如下:

Tensorflow实现神经网络拟合线性回归

看完上述内容,你们掌握Tensorflow实现神经网络拟合线性回归的方法了吗?如果还想学到更多技能或想了解更多相关内容,欢迎关注创新互联成都网站设计公司行业资讯频道,感谢各位的阅读!

另外有需要云服务器可以了解下创新互联scvps.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、高防服务器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。


文章题目:Tensorflow实现神经网络拟合线性回归-创新互联
标题链接:http://azwzsj.com/article/deosgd.html