go语言调度器怎么来的 go 调度器
golang的线程模型——GMP模型
内核线程(Kernel-Level Thread ,KLT)
专注于为中小企业提供成都网站设计、做网站服务,电脑端+手机端+微信端的三站合一,更高效的管理,为中小企业信宜免费做网站提供优质的服务。我们立足成都,凝聚了一批互联网行业人才,有力地推动了超过千家企业的稳健成长,帮助中小企业通过网站建设实现规模扩充和转变。
轻量级进程(Light Weight Process,LWP):轻量级进程就是我们通常意义上所讲的线程,由于每个轻量级进程都由一个内核线程支持,因此只有先支持内核线程,才能有轻量级进程
用户线程与系统线程一一对应,用户线程执行如lo操作的系统调用时,来回切换操作开销相对比较大
多个用户线程对应一个内核线程,当内核线程对应的一个用户线程被阻塞挂起时候,其他用户线程也阻塞不能执行了。
多对多模型是可以充分利用多核CPU提升运行效能的
go线程模型包含三个概念:内核线程(M),goroutine(G),G的上下文环境(P);
GMP模型是goalng特有的。
P与M一般是一一对应的。P(上下文)管理着一组G(goroutine)挂载在M(内核线程)上运行,图中左边蓝色为正在执行状态的goroutine,右边为待执行状态的goroutiine队列。P的数量由环境变量GOMAXPROCS的值或程序运行runtime.GOMAXPROCS()进行设置。
当一个os线程在执行M1一个G1发生阻塞时,调度器让M1抛弃P,等待G1返回,然后另起一个M2接收P来执行剩下的goroutine队列(G2、G3...),这是golang调度器厉害的地方,可以保证有足够的线程来运行剩下所有的goroutine。
当G1结束后,M1会重新拿回P来完成,如果拿不到就丢到全局runqueue中,然后自己放到线程池或转入休眠状态。空闲的上下文P会周期性的检查全局runqueue上的goroutine,并且执行它。
另一种情况就是当有些P1太闲而其他P2很忙碌的时候,会从其他上下文P2拿一些G来执行。
详细可以翻看下方第一个参考链接,写得真好。
最后用大佬的总结来做最后的收尾————
Go语言运行时,通过核心元素G,M,P 和 自己的调度器,实现了自己的并发线程模型。调度器通过对G,M,P的调度实现了两级线程模型中操作系统内核之外的调度任务。整个调度过程中会在多种时机去触发最核心的步骤 “一整轮调度”,而一整轮调度中最关键的部分在“全力查找可运行G”,它保证了M的高效运行(换句话说就是充分使用了计算机的物理资源),一整轮调度中还会涉及到M的启用停止。最后别忘了,还有一个与Go程序生命周期相同的系统监测任务来进行一些辅助性的工作。
浅析Golang的线程模型与调度器
Golang CSP并发模型
Golang线程模型
【golang详解】go语言GMP(GPM)原理和调度
Goroutine调度是一个很复杂的机制,下面尝试用简单的语言描述一下Goroutine调度机制,想要对其有更深入的了解可以去研读一下源码。
首先介绍一下GMP什么意思:
G ----------- goroutine: 即Go协程,每个go关键字都会创建一个协程。
M ---------- thread内核级线程,所有的G都要放在M上才能运行。
P ----------- processor处理器,调度G到M上,其维护了一个队列,存储了所有需要它来调度的G。
Goroutine 调度器P和 OS 调度器是通过 M 结合起来的,每个 M 都代表了 1 个内核线程,OS 调度器负责把内核线程分配到 CPU 的核上执行
模型图:
避免频繁的创建、销毁线程,而是对线程的复用。
1)work stealing机制
当本线程无可运行的G时,尝试从其他线程绑定的P偷取G,而不是销毁线程。
2)hand off机制
当本线程M0因为G0进行系统调用阻塞时,线程释放绑定的P,把P转移给其他空闲的线程执行。进而某个空闲的M1获取P,继续执行P队列中剩下的G。而M0由于陷入系统调用而进被阻塞,M1接替M0的工作,只要P不空闲,就可以保证充分利用CPU。M1的来源有可能是M的缓存池,也可能是新建的。当G0系统调用结束后,根据M0是否能获取到P,将会将G0做不同的处理:
如果有空闲的P,则获取一个P,继续执行G0。
如果没有空闲的P,则将G0放入全局队列,等待被其他的P调度。然后M0将进入缓存池睡眠。
如下图
GOMAXPROCS设置P的数量,最多有GOMAXPROCS个线程分布在多个CPU上同时运行
在Go中一个goroutine最多占用CPU 10ms,防止其他goroutine被饿死。
具体可以去看另一篇文章
【Golang详解】go语言调度机制 抢占式调度
当创建一个新的G之后优先加入本地队列,如果本地队列满了,会将本地队列的G移动到全局队列里面,当M执行work stealing从其他P偷不到G时,它可以从全局G队列获取G。
协程经历过程
我们创建一个协程 go func()经历过程如下图:
说明:
这里有两个存储G的队列,一个是局部调度器P的本地队列、一个是全局G队列。新创建的G会先保存在P的本地队列中,如果P的本地队列已经满了就会保存在全局的队列中;处理器本地队列是一个使用数组构成的环形链表,它最多可以存储 256 个待执行任务。
G只能运行在M中,一个M必须持有一个P,M与P是1:1的关系。M会从P的本地队列弹出一个可执行状态的G来执行,如果P的本地队列为空,就会想其他的MP组合偷取一个可执行的G来执行;
一个M调度G执行的过程是一个循环机制;会一直从本地队列或全局队列中获取G
上面说到P的个数默认等于CPU核数,每个M必须持有一个P才可以执行G,一般情况下M的个数会略大于P的个数,这多出来的M将会在G产生系统调用时发挥作用。类似线程池,Go也提供一个M的池子,需要时从池子中获取,用完放回池子,不够用时就再创建一个。
work-stealing调度算法:当M执行完了当前P的本地队列队列里的所有G后,P也不会就这么在那躺尸啥都不干,它会先尝试从全局队列队列寻找G来执行,如果全局队列为空,它会随机挑选另外一个P,从它的队列里中拿走一半的G到自己的队列中执行。
如果一切正常,调度器会以上述的那种方式顺畅地运行,但这个世界没这么美好,总有意外发生,以下分析goroutine在两种例外情况下的行为。
Go runtime会在下面的goroutine被阻塞的情况下运行另外一个goroutine:
用户态阻塞/唤醒
当goroutine因为channel操作或者network I/O而阻塞时(实际上golang已经用netpoller实现了goroutine网络I/O阻塞不会导致M被阻塞,仅阻塞G,这里仅仅是举个栗子),对应的G会被放置到某个wait队列(如channel的waitq),该G的状态由_Gruning变为_Gwaitting,而M会跳过该G尝试获取并执行下一个G,如果此时没有可运行的G供M运行,那么M将解绑P,并进入sleep状态;当阻塞的G被另一端的G2唤醒时(比如channel的可读/写通知),G被标记为,尝试加入G2所在P的runnext(runnext是线程下一个需要执行的 Goroutine。), 然后再是P的本地队列和全局队列。
系统调用阻塞
当M执行某一个G时候如果发生了阻塞操作,M会阻塞,如果当前有一些G在执行,调度器会把这个线程M从P中摘除,然后再创建一个新的操作系统的线程(如果有空闲的线程可用就复用空闲线程)来服务于这个P。当M系统调用结束时候,这个G会尝试获取一个空闲的P执行,并放入到这个P的本地队列。如果获取不到P,那么这个线程M变成休眠状态, 加入到空闲线程中,然后这个G会被放入全局队列中。
队列轮转
可见每个P维护着一个包含G的队列,不考虑G进入系统调用或IO操作的情况下,P周期性的将G调度到M中执行,执行一小段时间,将上下文保存下来,然后将G放到队列尾部,然后从队列中重新取出一个G进行调度。
除了每个P维护的G队列以外,还有一个全局的队列,每个P会周期性地查看全局队列中是否有G待运行并将其调度到M中执行,全局队列中G的来源,主要有从系统调用中恢复的G。之所以P会周期性地查看全局队列,也是为了防止全局队列中的G被饿死。
除了每个P维护的G队列以外,还有一个全局的队列,每个P会周期性地查看全局队列中是否有G待运行并将其调度到M中执行,全局队列中G的来源,主要有从系统调用中恢复的G。之所以P会周期性地查看全局队列,也是为了防止全局队列中的G被饿死。
M0
M0是启动程序后的编号为0的主线程,这个M对应的实例会在全局变量rutime.m0中,不需要在heap上分配,M0负责执行初始化操作和启动第一个G,在之后M0就和其他的M一样了
G0
G0是每次启动一个M都会第一个创建的goroutine,G0仅用于负责调度G,G0不指向任何可执行的函数,每个M都会有一个自己的G0,在调度或系统调用时会使用G0的栈空间,全局变量的G0是M0的G0
一个G由于调度被中断,此后如何恢复?
中断的时候将寄存器里的栈信息,保存到自己的G对象里面。当再次轮到自己执行时,将自己保存的栈信息复制到寄存器里面,这样就接着上次之后运行了。
我这里只是根据自己的理解进行了简单的介绍,想要详细了解有关GMP的底层原理可以去看Go调度器 G-P-M 模型的设计者的文档或直接看源码
参考: ()
()
Go语言——goroutine并发模型
参考:
Goroutine并发调度模型深度解析手撸一个协程池
Golang 的 goroutine 是如何实现的?
Golang - 调度剖析【第二部分】
OS线程初始栈为2MB。Go语言中,每个goroutine采用动态扩容方式,初始2KB,按需增长,最大1G。此外GC会收缩栈空间。
BTW,增长扩容都是有代价的,需要copy数据到新的stack,所以初始2KB可能有些性能问题。
更多关于stack的内容,可以参见大佬的文章。 聊一聊goroutine stack
用户线程的调度以及生命周期管理都是用户层面,Go语言自己实现的,不借助OS系统调用,减少系统资源消耗。
Go语言采用两级线程模型,即用户线程与内核线程KSE(kernel scheduling entity)是M:N的。最终goroutine还是会交给OS线程执行,但是需要一个中介,提供上下文。这就是G-M-P模型
Go调度器有两个不同的运行队列:
go1.10\src\runtime\runtime2.go
Go调度器根据事件进行上下文切换。
调度的目的就是防止M堵塞,空闲,系统进程切换。
详见 Golang - 调度剖析【第二部分】
Linux可以通过epoll实现网络调用,统称网络轮询器N(Net Poller)。
文件IO操作
上面都是防止M堵塞,任务窃取是防止M空闲
每个M都有一个特殊的G,g0。用于执行调度,gc,栈管理等任务,所以g0的栈称为调度栈。g0的栈不会自动增长,不会被gc,来自os线程的栈。
go1.10\src\runtime\proc.go
G没办法自己运行,必须通过M运行
M通过通过调度,执行G
从M挂载P的runq中找到G,执行G
Golang的调度模型
Go有四大核心模块,基本全部体现在runtime,有调度系统、GC、goroutine、channel,那么深入理解其中的精髓可以帮助我们理解Go这一门语言!
参考: 调度系统设计精要
下面是我用Go语言简单写的一个调度器,大家可以看看设计思路,以及存在的问题!
1、测试条件,调度器只启动两个线程,然后一个线程主要是负责循环的添加任务,一个线程循环的去执行任务
2、测试条件,调度器启动三个线程,然后两个线程去执行任务,一个添加任务
3、继续测试,启动十个线程,一个添加任务,九个执行任务
4、我们添加一些阻塞的任务
执行可以看到完全不可用
1、 可以看到随着M的不断的增加,可以发现执行任务的数量也不断的减少,原因是什么呢?有兴趣的同学可以加一个pprof可以看看,其实大量的在等待锁的过程!
2、如果我的M运行了类似于Sleep操作的方法如何解决了,我的调度器还能支撑这个量级的调度吗?
关于pprof如何使用:在代码头部加一个这个代码:
我们查看一下 go tool pprof main/prof.pporf
可以看到真正执行代码的时间只有 0.17s + 0.02s 其他时间都被阻塞掉了!
1、GM模型中的所有G都是放入到一个queue,那么导致所有的M取执行任务时都会去竞争锁,我们插入G也会去竞争锁,所以解决这种问题一般就是减少对单一资源的竞争,那就是桶化,其实就是每个线程都分配一个队列
2、GM模型中没有任务状态,只有runnable,假如任务遇到阻塞,完全可以把任务挂起再唤醒
这里其实会遇到一个问题,假如要分配很多个线程,那么此时随着线程的增加,也会造成队列的增加,其实也会造成调度器的压力,因为它需要遍历全部线程的队列去分配任务以及后续会讲到的窃取任务!
因为我们知道CPU的最大并行度其实取决于CPU的核数,也就是我们没必要为每个线程都去分配一个队列,因为就算是给他们分配了,他们自己去那执行调度,其实也会出现大量阻塞,原因就是CPU调度不过来这些线程!
Go里面是只分配了CPU个数的队列,这里就是P这个概念,你可以理解为P其实是真正的资源分配器,M很轻只是执行程序,所有的资源内存都维护在P上!M只有绑定P才能执行任务(强制的)!
这样做的好处:
1、首先调度程序其实就是调度不同状态的任务,go里面为Go标记了不同的状态,其实大概就是分为:runnable,running,block等,所以如何充分调度不同状态的G成了问题,那么关于阻塞的G如何解决,其实可以很好的解决G调度的问题!
上面这些情况其实就分为:
2、用户态阻塞,一般Go里面依靠 gopark 函数去实现,大体的代码逻辑基本上和go的调度绑定死了
源码在:
3、其实对于netpool 这种nio模型,其实内核调用是非阻塞的,所以go开辟了一个网络轮训器队列,来存放这些被阻塞的g,等待内核被唤醒!那么什么时候会被唤醒了,其实就是需要等待调度器去调度了!
4、如果是内核态阻塞了(内核态阻塞一般都会将线程挂起,线程需要等待被唤醒),我们此时P只能放弃此线程的权利,然后再找一个新的线程去运行P!
关于着新线程:找有没有idle的线程,没有就会创建一个新的线程!
关于当内核被唤醒后的操作:因为GPM模型所以需要找到个P绑定,所以G会去尝试找一个可用的P,如果没有可用的P,G会标记为runnable放到全局队列中!
5、其实了解上面大致其实就了解了Go的基本调度模型
答案文章里慢慢品味!
如果某个 G 执行时间过长,其他的 G 如何才能被正常的调度? 这便涉及到有关调度的两个理念:协作式调度与抢占式调度。协作式和抢占式这两个理念解释起来很简单: 协作式调度依靠被调度方主动弃权;抢占式调度则依靠调度器强制将被调度方被动中断。
例如下面的代码,我本地的版本是 go1.13.5
执行: GOMAXPROCS=1 配置全局只能有一个P
可以看到main函数无法执行!也就是那个go 空转抢占了整个程序
备注:
但是假如我换为用 1.14+版本执行,有兴趣的话可以使用我的docker镜像,直接可以拉取: fanhaodong/golang:1.15.11 和 fanhaodong/golang:1.13.5
首先我们知道G/M/P,G可能和M也可能和P解除绑定,那么关于数据变量放在哪哇!其实这个就是逃逸分析!
输出可以看到其实没有发生逃逸,那是因为 demo被拷贝它自己的栈空间内
备注:
-gcflags"-N -l -m" 其中 -N禁用优化-l禁止内联优化,-m打印逃逸信息
那么继续改成这个
可以看到发现 demo对象其实被逃逸到了堆上!这就是不会出现类似于G如果被别的M执行,其实不会出现内存分配位置的问题!
所以可以看到demo其实是copy到了堆上!这就是g逃逸的问题,和for循环一样的
执行可以发现,其实x已经逃逸到了堆上,所以你所有的g都引用的一个对象,如何解决了
如何解决了,其实很简单
也谈goroutine调度器
图解Go运行时调度器
Go语言回顾:从Go 1.0到Go 1.13
Go语言原本
调度系统设计精要
Scalable Go Scheduler Design Doc
网站栏目:go语言调度器怎么来的 go 调度器
文章源于:http://azwzsj.com/article/ddoihcg.html