mysql大数据怎么解决 mysql 大数据查询
MySQL数据库千万级数据处理?
也就是A表中保留B表中存在的数据,可以通过筛选把这样的数据放在第三个表
河源网站建设公司成都创新互联,河源网站设计制作,有大型网站制作公司丰富经验。已为河源超过千家提供企业网站建设服务。企业网站搭建\成都外贸网站制作要多少钱,请找那个售后服务好的河源做网站的公司定做!
只要索引合理,数据量不算大
祝好运,望采纳。
mysql怎么处理大数据
mysql处理大数据很困难吧,不建议使用mysql来处理大数据。
mysql有个针对大数据的产品,叫infobright,可以看看,不过好像是收费的。
或者研究下,Hadoop,Hive等,可处理大数据。
如果有预算,可以使用一些商业大数据产品,国内的譬如永洪科技的大数据BI产品,不仅能高性能处理大数据,还可做数据分析。
当然如果是简单的查询,mysql如果做好索引,可能可以提高性能。
mysql 数据量超过百万后怎么处理
我们经常会遇到操作一张大表,发现操作时间过长或影响在线业务了,想要回退大表操作的场景。在我们停止大表操作之后,等待回滚是一个很漫长的过程,尽管你可能对知道一些缩短时间的方法,处于对生产环境数据完整性的敬畏,也会选择不做介入。最终选择不作为的原因大多源于对操作影响的不确定性。实践出真知,下面针对两种主要提升事务回滚速度的方式进行验证,一种是提升操作可用内存空间,一种是通过停实例,禁用 redo 回滚方式进行进行验证。
仔细阅读过官方手册的同学,一定留意到了对于提升大事务回滚效率,官方提供了两种方法:一是增加 innodb_buffer_pool_size 参数大小,二是合理利用 innodb_force_recovery=3 参数,跳过事务回滚过程。第一种方式比较温和,innodb_buffer_pool_size 参数是可以动态调整的,可行性也较高。第二种方式相较之下较暴力,但效果较好。
两种方式各有自己的优点,第一种方式对线上业务系统影响较小,不会中断在线业务。第二种方式效果更显著,会短暂影响业务连续,回滚所有没有提交的事务。
mysql 如何处理亿级数据
1、数据表 collect ( id, title ,info ,vtype) 就这4个字段,其中 title 用定长,info 用text, id 是逐渐,vtype是tinyint,vtype是索引。这是一个基本的新闻系统的简单模型。现在往里面填充数据,填充10万篇新闻。
2、最后collect 为 10万条记录,数据库表占用硬盘1.6G。OK ,看下面这条sql语句:select id,title from collect limit 1000,10; 很快;基本上0.01秒就OK,再看下面的select id,title from collect limit 90000,10; 从9万条开始分页。
3、8-9秒完成。
4、看下面一条语句:select id from collect order by id limit 90000,10; 很快,0.04秒就OK。因为用了id主键做索引当然快。
分享名称:mysql大数据怎么解决 mysql 大数据查询
文章地址:http://azwzsj.com/article/ddeohjc.html