mysql怎么优化表 mysql 怎么优化
mysql对千万级的大表怎么优化
MySQL 对于千万级的大表的优化:
目前成都创新互联已为千余家的企业提供了网站建设、域名、雅安服务器托管、网站运营、企业网站设计、泸水网站维护等服务,公司将坚持客户导向、应用为本的策略,正道将秉承"和谐、参与、激情"的文化,与客户和合作伙伴齐心协力一起成长,共同发展。
常用的优化sql----突出快字,使完成操作的时间最短
1、用索引提高效率:
2、选择有效率的表名顺序,及数据结构及字段;
3、使用DECODE函数可以避免重复扫描相同记录或重复连接相同的表;
4、删除重复记;
5、过内部函数提高SQL效率;......
读写分离-----操作不在一个表里完成
1、主数据库A,进行事务性增、改、删操作(INSERT、UPDATE、DELETE);
2、从数据库B,进行SELECT查询操作;
3、A复制到B,使数据保持一致性;
垂直划分 ------数据不存储在一个服务器里
按照功能划分,把数据分别放到不同的数据库和服务器。如博客功能的放到服务器A,储存文件放到服务器B;
水平划分------相同数据结构的数据不放在一张表里
把一个表的数据根据一定的规则划分到不同的数据库,两个数据库的表结构一样。
数据归档处理-----时间优先原则存储读取
将数据库中不经常使用的数据迁移至近线设备,将长期不使用的数据迁移至文件形式归档。这样,随着应用的需要,数据会在在线、近线和文件文档之间移动,如当应用需要访问很久以前的某些数据,它们的物理位置在近线设备,则会自动移动到在线设备。对用户的应用而言,这些都是透明的,就像所有数据都存放在在线设备一样,不会对数据库应用产生任何影响。
超详细MySQL数据库优化
数据库优化一方面是找出系统的瓶颈,提高MySQL数据库的整体性能,而另一方面需要合理的结构设计和参数调整,以提高用户的相应速度,同时还要尽可能的节约系统资源,以便让系统提供更大的负荷.
1. 优化一览图
2. 优化
笔者将优化分为了两大类,软优化和硬优化,软优化一般是操作数据库即可,而硬优化则是操作服务器硬件及参数设置.
2.1 软优化
2.1.1 查询语句优化
1.首先我们可以用EXPLAIN或DESCRIBE(简写:DESC)命令分析一条查询语句的执行信息.
2.例:
显示:
其中会显示索引和查询数据读取数据条数等信息.
2.1.2 优化子查询
在MySQL中,尽量使用JOIN来代替子查询.因为子查询需要嵌套查询,嵌套查询时会建立一张临时表,临时表的建立和删除都会有较大的系统开销,而连接查询不会创建临时表,因此效率比嵌套子查询高.
2.1.3 使用索引
索引是提高数据库查询速度最重要的方法之一,关于索引可以参高笔者MySQL数据库索引一文,介绍比较详细,此处记录使用索引的三大注意事项:
2.1.4 分解表
对于字段较多的表,如果某些字段使用频率较低,此时应当,将其分离出来从而形成新的表,
2.1.5 中间表
对于将大量连接查询的表可以创建中间表,从而减少在查询时造成的连接耗时.
2.1.6 增加冗余字段
类似于创建中间表,增加冗余也是为了减少连接查询.
2.1.7 分析表,,检查表,优化表
分析表主要是分析表中关键字的分布,检查表主要是检查表中是否存在错误,优化表主要是消除删除或更新造成的表空间浪费.
1. 分析表: 使用 ANALYZE 关键字,如ANALYZE TABLE user;
2. 检查表: 使用 CHECK关键字,如CHECK TABLE user [option]
option 只对MyISAM有效,共五个参数值:
3. 优化表:使用OPTIMIZE关键字,如OPTIMIZE [LOCAL|NO_WRITE_TO_BINLOG] TABLE user;
LOCAL|NO_WRITE_TO_BINLOG都是表示不写入日志.,优化表只对VARCHAR,BLOB和TEXT有效,通过OPTIMIZE TABLE语句可以消除文件碎片,在执行过程中会加上只读锁.
2.2 硬优化
2.2.1 硬件三件套
1.配置多核心和频率高的cpu,多核心可以执行多个线程.
2.配置大内存,提高内存,即可提高缓存区容量,因此能减少磁盘I/O时间,从而提高响应速度.
3.配置高速磁盘或合理分布磁盘:高速磁盘提高I/O,分布磁盘能提高并行操作的能力.
2.2.2 优化数据库参数
优化数据库参数可以提高资源利用率,从而提高MySQL服务器性能.MySQL服务的配置参数都在my.cnf或my.ini,下面列出性能影响较大的几个参数.
2.2.3 分库分表
因为数据库压力过大,首先一个问题就是高峰期系统性能可能会降低,因为数据库负载过高对性能会有影响。另外一个,压力过大把你的数据库给搞挂了怎么办?所以此时你必须得对系统做分库分表 + 读写分离,也就是把一个库拆分为多个库,部署在多个数据库服务上,这时作为主库承载写入请求。然后每个主库都挂载至少一个从库,由从库来承载读请求。
2.2.4 缓存集群
如果用户量越来越大,此时你可以不停的加机器,比如说系统层面不停加机器,就可以承载更高的并发请求。然后数据库层面如果写入并发越来越高,就扩容加数据库服务器,通过分库分表是可以支持扩容机器的,如果数据库层面的读并发越来越高,就扩容加更多的从库。但是这里有一个很大的问题:数据库其实本身不是用来承载高并发请求的,所以通常来说,数据库单机每秒承载的并发就在几千的数量级,而且数据库使用的机器都是比较高配置,比较昂贵的机器,成本很高。如果你就是简单的不停的加机器,其实是不对的。所以在高并发架构里通常都有缓存这个环节,缓存系统的设计就是为了承载高并发而生。所以单机承载的并发量都在每秒几万,甚至每秒数十万,对高并发的承载能力比数据库系统要高出一到两个数量级。所以你完全可以根据系统的业务特性,对那种写少读多的请求,引入缓存集群。具体来说,就是在写数据库的时候同时写一份数据到缓存集群里,然后用缓存集群来承载大部分的读请求。这样的话,通过缓存集群,就可以用更少的机器资源承载更高的并发。
一个完整而复杂的高并发系统架构中,一定会包含:各种复杂的自研基础架构系统。各种精妙的架构设计.因此一篇小文顶多具有抛砖引玉的效果,但是数据库优化的思想差不多就这些了.
讲述mysql数据表几种有效优化方法
下面我们要四种关于mysql教程数据表几种有效优化方法 哦,从而提高mysql数据库教程在应用方面的数据吞吐能力。 一、优化表的数据类型 select * from tablename procedure analyse(); select * from tablename procedure analyse(16.265); 上面输出一列信息,牟你数据表的字段提出优化建义, 二、通过拆分表提高数据访问效率 拆分一是指针对表进行拆分,如果是针对myisam类型的表进行处理的话,可以有两种拆分方法 1、是垂直拆分,把主要的与一些散放到一个表,然后把主要的和另外的列放在另一张表。 2、水平拆分方法,根据一列或多列的值把数据行放到两个独立的表中,水平拆分通常几种情况。 表很大,拆分后可降低查询时数据和索引的查询速度,同时也降低了索引的层数,提高查询的速度。 表中的数据本来就有独立性,表中分别记录各个地区的数据或不同时期的数据,特别是有些数据常用,厕国一些数据不常用的情况下, 需要把数据存放到多个不同的介质上。 三、逆规范化 四、使用中间表优化方法对于数据库教程大的表,在进行统计查询时通常会比较慢的,并且还要考虑查询是否会对在线应用产生影响,通常这种情况下我们使用中间表可以提高查询统计速度
文章题目:mysql怎么优化表 mysql 怎么优化
URL分享:http://azwzsj.com/article/dddeecj.html