TungstenFabric入门宝典丨多编排器用法及配置-创新互联
在多个编排器之间共享控制平面有很多好处,包括routing/bridging、DNS、security等。
目前创新互联已为成百上千家的企业提供了网站建设、域名、虚拟空间、网站托管、服务器托管、企业网站设计、睢阳网站维护等服务,公司将坚持客户导向、应用为本的策略,正道将秉承"和谐、参与、激情"的文化,与客户和合作伙伴齐心协力一起成长,共同发展。 下面我来描述每种情况的使用方法和配置。 K8s+OpenStackKubernetes + OpenStack的组合已经涵盖并且运行良好。
https://github.com/Juniper/contrail-ansible-deployer/wiki/Deployment-Example:-Contrail-and-Kubernetes-and-Openstack
另外,Tungsten Fabric支持嵌套安装(nested installation)和非嵌套安装(non-nested installation),因此你可以选择其中一个选项。
https://github.com/Juniper/contrail-kubernetes-docs
K8s+K8s 将多个Kubernetes集群添加到一个Tungsten Fabric中,是一种可能的安装选项。 由于kube-manager支持cluster_name参数,该参数修改了将要创建的租户名称(默认为“k8s”),因此这应该是可行的。不过,我在上次尝试该方法时效果不佳,因为有些对象被其它kube-manager作为陈旧对象(stale object)删除了。
https://github.com/Juniper/contrail-container-builder/blob/master/containers/kubernetes/kube-manager/entrypoint.sh#L28
在将来的版本中,可能会更改此行为。 注意: 从R2002及更高版本开始,这个修补程序解决了该问题,并且不再需要自定义修补程序。
https://review.opencontrail.org/c/Juniper/contrail-controller/+/55758
注意:应用这些补丁,似乎可以将多个kube-master添加到一个Tungsten Fabric集群中。
diff --git a/src/container/kube-manager/kube_manager/kube_manager.py b/src/container/kube-manager/kube_manager/kube_manager.py
index 0f6f7a 0 ..adb20a6 100644
--- a/src/container/kube-manager/kube_manager/kube_manager.py
+++ b/src/container/kube-manager/kube_manager/kube_manager.py
@@ - 219 , 10 + 219 , 10 @@ def main(args_str=None, kube_api_skip=False, event_queue=None,
if args. cluster_id:
client_pfx = args.cluster_id + '-'
- zk_path_pfx = args.cluster_id + '/'
+ zk_path_pfx = args.cluster_id + '/' + args.cluster_name
else:
client_pfx = ''
- zk_path_pfx = ''
+ zk_path_pfx = '' + args.cluster_name
# randomize collector list
args.random_collectors = args.collectors
diff --git a/src/container/kube-manager/kube_manager/vnc/vnc_namespace.py b/src/container/kube-manager/kube_manager/vnc/vnc_namespace.py
index 00cce81..f968cae 100644
--- a/src/container/kube-manager/kube_manager/vnc/vnc_namespace.py
+++ b/src/container/kube-manager/kube_manager/vnc/vnc_namespace.py
@@ - 594, 7 + 594, 8 @@ class VncNamespace( VncCommon):
self._queue.put(event)
def namespace_timer( self) :
- self ._sync_namespace_project()
+ # self._sync_namespace_project() ## temporary disabled
+ pass
def _get_namespace_firewall_ingress_rule_name( self, ns_name) :
return "-" .join([vnc_kube_config.cluster_name(),
由于kube-master创建的pod-network都在同一个Tungsten Fabric controller上,因此在它们之间实现路由泄漏(route-leak)是可能的:)
由于cluster_name将成为Tungsten Fabric的fw-policy中的标签之一,因此在多个Kubernetes集群之间也可以使用相同的标签
172.31.9.29 Tungsten Fabric controller
172.31.22.24 kube-master1 (KUBERNETES_CLUSTER_NAME=k8s1 is set)
172.31.12.82 kube-node1 (it belongs to kube-master1)
172.31.41.5 kube-master2(KUBERNETES_CLUSTER_NAME=k8s2 is set)
172.31.4.1 kube-node2 (it belongs to kube-master2) [root@ip -172-31-22-24 ~] # kubectl get node
NAME STATUS ROLES AGE VERSION
ip -172-31-12-82.ap-northeast -1.compute.internal Ready < none> 57m v1 .12.3
ip -172-31-22-24.ap-northeast -1.compute.internal NotReady master 58m v1 .12.3
[root@ip -172-31-22-24 ~] #
[root@ip -172-31-41-5 ~] # kubectl get node
NAME STATUS ROLES AGE VERSION
ip -172-31-4-1.ap-northeast -1.compute.internal Ready < none> 40m v1 .12.3
ip -172-31-41-5.ap-northeast -1.compute.internal NotReady master 40m v1 .12.3
[root@ip -172-31-41-5 ~] #
[root@ip -172-31-22-24 ~] # kubectl get pod -o wide
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE
cirros-deployment -75c98888b9 -7pf82 1/ 1 Running 0 28m 10.47.255.249 ip -172-31-12-82.ap-northeast -1.compute.internal < none>
cirros-deployment -75c98888b9-sgrc6 1/ 1 Running 0 28m 10.47.255.250 ip -172-31-12-82.ap-northeast -1.compute.internal < none>
cirros-vn1 1/ 1 Running 0 7m56s 10.0.1.3 ip -172-31-12-82.ap-northeast -1.compute.internal < none>
[root@ip -172-31-22-24 ~] # [root@ip -172-31-41-5 ~] # kubectl get pod -o wide
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE
cirros-deployment -75c98888b9 -5lqzc 1/ 1 Running 0 27m 10.47.255.250 ip -172-31-4-1.ap-northeast -1.compute.internal < none>
cirros-deployment -75c98888b9-dg8bf 1/ 1 Running 0 27m 10.47.255.249 ip -172-31-4-1.ap-northeast -1.compute.internal < none>
cirros-vn2 1/ 1 Running 0 5m36s 10.0.2.3 ip -172-31-4-1.ap-northeast -1.compute.internal < none>
[root@ip -172-31-41-5 ~] # / # ping 10.0.2.3
PING 10.0.2.3 ( 10.0.2.3): 56 data bytes
64 bytes from 10.0.2.3: seq= 83 ttl= 63 time= 1.333 ms
64 bytes from 10.0.2.3: seq= 84 ttl= 63 time= 0.327 ms
64 bytes from 10.0.2.3: seq= 85 ttl= 63 time= 0.319 ms
64 bytes from 10.0.2.3: seq= 86 ttl= 63 time= 0.325 ms
^C
--- 10.0.2.3 ping statistics ---
87 packets transmitted, 4 packets received, 95% packet loss
round-trip min/ avg/ max = 0.319/ 0.576/ 1.333 ms
/ #
/ # ip -o a
1: lo:mtu 65536 qdisc noqueue qlen 1000\ link/loopback 00: 00: 00: 00: 00: 00 brd 00: 00: 00: 00: 00: 00
1: lo inet 127.0.0.1/ 8 scope host lo\ valid_lft forever preferred_lft forever
18: eth0@if19:mtu 1500 qdisc noqueue \ link/ether 02:b9: 11:c9: 4c:b1 brd ff:ff:ff:ff:ff:ff
18: eth0 inet 10.0.1.3/ 24 scope global eth0\ valid_lft forever preferred_lft forever
/ #
-> 在属于不同kubernetes 集群的Pod之间ping,工作良好 [root@ip -172-31-9-29 ~] # ./contrail-introspect-cli/ist.py ctr route show -t default-domain:k8s1-default:vn1:vn1.inet.0
default- domain:k8s1- default:vn1:vn1.inet .0: 2 destinations, 2 routes ( 1 primary, 1 secondary, 0 infeasible)
10.0.1.3/ 32, age: 0: 06: 50.001343, last_modified: 2019-Jul -28 18: 23: 08.243656
[XMPP ( interface)|ip -172-31-12-82.local] age: 0: 06: 50.005553, localpref: 200, nh: 172.31.12.82, encap: [ 'gre', 'udp'], label: 50, AS path: None
10.0.2.3/ 32, age: 0: 02: 25.188713, last_modified: 2019-Jul -28 18: 27: 33.056286
[XMPP ( interface)|ip -172-31-4-1.local] age: 0: 02: 25.193517, localpref: 200, nh: 172.31.4.1, encap: [ 'gre', 'udp'], label: 50, AS path: None
[root@ip -172-31-9-29 ~] #
[root@ip -172-31-9-29 ~] # ./contrail-introspect-cli/ist.py ctr route show -t default-domain:k8s2-default:vn2:vn2.inet.0
default- domain:k8s2- default:vn2:vn2.inet .0: 2 destinations, 2 routes ( 1 primary, 1 secondary, 0 infeasible)
10.0.1.3/ 32, age: 0: 02: 36.482764, last_modified: 2019-Jul -28 18: 27: 33.055702
[XMPP ( interface)|ip -172-31-12-82.local] age: 0: 02: 36.489419, localpref: 200, nh: 172.31.12.82, encap: [ 'gre', 'udp'], label: 50, AS path: None
10.0.2.3/ 32, age: 0: 04: 37.126317, last_modified: 2019-Jul -28 18: 25: 32.412149
[XMPP ( interface)|ip -172-31-4-1.local] age: 0: 04: 37.133912, localpref: 200, nh: 172.31.4.1, encap: [ 'gre', 'udp'], label: 50, AS path: None
[root@ip -172-31-9-29 ~] #
-> 基于以下的网络策略,每一个kube- master的每一个虚拟网络有路由去其他的kube- master 的Pod (venv) [root@ip -172-31-9-29 ~] # contrail-api-cli --host 172.31.9.29 ls -l virtual-network
virtual-network/f9d06d27 -8fc1 -413d-a6d6-c51c42191ac0 default- domain:k8s2- default:vn2
virtual-network/ 384fb3ef -247b -42e6-a628 -7111fe343f90 default- domain:k8s2- default:k8s2- default-service-network
virtual-network/c3098210 -983b -46bc-b750-d06acfc66414 default- domain:k8s1- default:k8s1- default-pod-network
virtual-network/ 1ff6fdbd-ac2e -4601-b08c -5f7255466312 default- domain: default- project:ip-fabric
virtual-network/d8d95738 -0a00 -457f-b21e -60304859d1f9 default- domain:k8s2- default:k8s2- default-pod-network
virtual-network/ 0c075b76 -4219-4f79-a4f5 -1b4e6729f16e default- domain:k8s1- default:k8s1- default-service-network
virtual-network/ 985b3b5f -84b7 -4810-a54d-abd09a37f525 default- domain:k8s1- default:vn1
virtual-network/ 23782ea7 -4000-491f-b20d -01c6ab9e2ba8 default- domain: default- project: default- virtual-network
virtual-network/ 90cce352-ef9b -4358-81b3-ef87a9cb63e8 default- domain: default- project:__link_local__
virtual-network/ 0292810c-c511 -4147-89c0 -9fdd571ccce8 default- domain: default- project:dci-network
(venv) [root@ip -172-31-9-29 ~] #
(venv) [root@ip -172-31-9-29 ~] # contrail-api-cli --host 172.31.9.29 ls -l network-policy
network- policy/ 134d38b2 -79e2-4a3e-a2f7-a3d61ceaf5e2 default- domain:k8s1- default:vn1- to-vn2 < -- route-leak between to kubernetes cluster
network- policy/ 8e5c5c4a -14eb -4fc4 -9b46 -81a5b923bbe0 default- domain:k8s1- default:k8s1- default-ip-fabric-np
network- policy/ 544d5076 -3dff -45a1-bb47 -8aec5e1e5a37 default- domain:k8s1- default:k8s1- default-pod-service-np
network- policy/ 33884d88 -6492-4e0f -934c -080a794ce132 default- domain:k8s2- default:k8s2- default-ip-fabric-np
network- policy/ 232beb43 -2008-4df3 -969f-a4eee653ff46 default- domain:k8s2- default:k8s2- default-pod-service-np
network- policy/a6ee02bd-ad0d -4393-be60 -66da8032237a default- domain:k8s2- default:k8s2- default-service-np
network- policy/a9cedd67 -127a -40fd -9f44 -78890dc3cfe4 default- domain:k8s1- default:k8s1- default-service-np
(venv) [root@ip -172-31-9-29 ~] #
OpenStack+OpenStack
我还没有尝试将两个OpenStack集群添加到一个Tungsten Fabric controller中,但如果它们不使用相同的租户名称,那么应该是可行的。 K8s+vCenter
Kubernetes和vCenter的组合可以同时使用。用例类似于Kubernetes + OpenStack。
OpenStack+vCenter
OpenStack和vCenter的组合有点奇怪,因为OpenStack仪表盘可能用作vCenter网络的管理UI。 根据我的尝试,vcenter-plugin会检查所有可用租户下的所有virtual-network,而不是“vCenter”租户下的virtual-network,因此,如果创建了virtual-network或其它Neutron组件,也可以在ESXi上的vRouterVM上使用。通过此设置,vCenter用户可以自己实现网络功能,就像使用EC2 / VPC一样。
还可以使用vCenter的权限功能来实现VMI和NF的伪多租户。
https://docs.vmware.com/en/VMware-vSphere/6.5/com.vmware.vsphere.security.doc/GUID-4B47F690-72E7-4861-A299-9195B9C52E71.html
vCenter+vCenter
多vCenter是一个重要话题,因为vCenter具有明确定义的大配置,而多vCenter安装是解决这些问题的常用方法。 在这种情况下,最简单的设置是在每个vCenter上配置多个Tungsten Fabric集群,但此时很难在两个集群之间进行vMotion,因为Tungsten Fabric在vMotion完成后会创建一个新的端口,并且可能会分配不同的固定IP。 因此,我认为将多个vCenter分配给一个Tungsten Fabric集群,将会有比较合理的用例。 根据我的尝试,在当前实现中,由于vcenter-plugin仅对某些对象使用“vCenter”租户,因此,如果不进行代码修改,就不可能同时使用两个vcenter-plugin。 如果可以按vcenter-plugin和vcenter-manager修改租户,则可以为每个vCenter分配一个单独的租户,然后同时使用它们,就像同时使用Kubernetes和OpenStack一样。 如果这是可行的,还可以在多vCenter的环境中使用service-insertion和物理交换机扩展。
甚至SRM集成也可能采用这种方式,因为占位符VM将分配一个新的端口,可以对其进行编辑以分配正确的固定IP。
K8s+ OpenStack+vCenter
我不知道是否会使用这样的配置,因为Kubernetes / OpenStack / vCenter具有一些功能重叠,尽管如果设置正确的话会工作良好。
·END·
Tungsten Fabric入门宝典系列文章——
-
首次启动和运行指南
TF组件的七种“武器”
- 编排器集成
- 关于安装的那些事(上)
- 关于安装的那些事(下)
- 主流监控系统工具的集成
- 开始第二天的工作
- 8个典型故障及排查Tips
关于集群更新的那些事
说说L3VPN及EVPN集成
关于服务链、BGPaaS及其它
-
关于多集群和多数据中心
Tungsten Fabric 架构解析 系列文章 ——
第一篇: TF主要特点和用例
第二篇: TF怎么运作
第三篇:详解vRouter体系结构
第四篇: TF的服务链
第五篇: vRouter的部署选项
第六篇: TF如何收集、分析、部署?
第七篇: TF如何编排
第八篇: TF支持API一览
第九篇: TF如何连接到物理网络
第十篇: TF基于应用程序的安全策略
TF中文社区
多云互联 · 开源开放
我知道你“在看”哟~
本文题目:TungstenFabric入门宝典丨多编排器用法及配置-创新互联
当前路径:http://azwzsj.com/article/csdjip.html