如何使用Opencv+Python实现图像运动模糊和高斯模糊-创新互联
这篇文章给大家分享的是有关如何使用Opencv+Python实现图像运动模糊和高斯模糊的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。
目前成都创新互联已为数千家的企业提供了网站建设、域名、雅安服务器托管、网站运营、企业网站设计、玉环网站维护等服务,公司将坚持客户导向、应用为本的策略,正道将秉承"和谐、参与、激情"的文化,与客户和合作伙伴齐心协力一起成长,共同发展。运动模糊:由于相机和物体之间的相对运动造成的模糊,又称为动态模糊
Opencv+Python实现运动模糊,主要用到的函数是cv2.filter2D()
:
# coding: utf-8 import numpy as np import cv2 def motion_blur(image, degree=12, angle=45): image = np.array(image) # 这里生成任意角度的运动模糊kernel的矩阵, degree越大,模糊程度越高 M = cv2.getRotationMatrix2D((degree / 2, degree / 2), angle, 1) motion_blur_kernel = np.diag(np.ones(degree)) motion_blur_kernel = cv2.warpAffine(motion_blur_kernel, M, (degree, degree)) motion_blur_kernel = motion_blur_kernel / degree blurred = cv2.filter2D(image, -1, motion_blur_kernel) # convert to uint8 cv2.normalize(blurred, blurred, 0, 255, cv2.NORM_MINMAX) blurred = np.array(blurred, dtype=np.uint8) return blurred img = cv2.imread('./9.jpg') img_ = motion_blur(img) cv2.imshow('Source image',img) cv2.imshow('blur image',img_) cv2.waitKey()
原图:
运动模糊效果:
高斯模糊:图像与二维高斯分布的概率密度函数做卷积,模糊图像细节
Opencv+Python实现高斯模糊,主要用到的函数是cv2.GaussianBlur()
:
# coding: utf-8 import numpy as np import cv2 img = cv2.imread('./9.jpg') img_ = cv2.GaussianBlur(img, ksize=(9, 9), sigmaX=0, sigmaY=0) cv2.imshow('Source image',img) cv2.imshow('blur image',img_) cv2.waitKey()
高斯模糊效果:
感谢各位的阅读!关于“如何使用Opencv+Python实现图像运动模糊和高斯模糊”这篇文章就分享到这里了,希望以上内容可以对大家有一定的帮助,让大家可以学到更多知识,如果觉得文章不错,可以把它分享出去让更多的人看到吧!
另外有需要云服务器可以了解下创新互联scvps.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、高防服务器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。
网页题目:如何使用Opencv+Python实现图像运动模糊和高斯模糊-创新互联
标题链接:http://azwzsj.com/article/cscogj.html