Python分布式进程中你会遇到的问题解析-创新互联

小惊大怪

创新互联是专业的余庆网站建设公司,余庆接单;提供成都做网站、成都网站设计、成都外贸网站建设,网页设计,网站设计,建网站,PHP网站建设等专业做网站服务;采用PHP框架,可快速的进行余庆网站开发网页制作和功能扩展;专业做搜索引擎喜爱的网站,专业的做网站团队,希望更多企业前来合作!

你是不是在用Python3或者在windows系统上编程?最重要的是你对进程和线程不是很清楚?那么恭喜你,在python分布式进程中,会有坑等着你去挖。。。(hahahaha,此处允许我吓唬一下你)开玩笑的啦,不过,如果你知道序列中不支持匿名函数,那这个坑就和你say byebye了。好了话不多数,直接进入正题。

分布式进程

正如大家所知道的Process比Thread更稳定,而且Process可以分布到多台机器上,而Thread最多只能分布到同一台机器的多个CPU上。Python的multiprocessing模块不但支持多进程,其中managers子模块还支持把多进程分布到多台机器上。一个服务进程可以作为调度者,将任务分布到其他多个进程中,依靠网络通信。由于managers模块封装很好,不必了解网络通信的细节,就可以很容易地编写分布式多进程程序。

代码记录

举个例子

如果我们已经有一个通过Queue通信的多进程程序在同一台机器上运行,现在,由于处理任务的进程任务繁重,希望把发送任务的进程和处理任务的进程分布到两台机器上,这应该怎么用分布式进程来实现呢?你已经知道了原有的Queue可以继续使用,而且通过managers模块把Queue通过网络暴露出去,就可以让其他机器的进程来访问Queue了。好,那我们就这么干!

写个task_master.py

我们先看服务进程。服务进程负责启动Queue,把Queue注册到网络上,然后往Queue里面写入任务。

#!/user/bin/pytthon 
# -*- coding:utf-8 -*- 
# @Time: 2018/3/3 16:46 
# @Author: lichexo 
# @File: task_master.py 
import random, time, queue 
from multiprocessing.managers import BaseManager 
# 发送任务的队列: 
task_queue = queue.Queue() 
# 接收结果的队列: 
result_queue = queue.Queue() 
# 从BaseManager继承的QueueManager: 
class QueueManager(BaseManager): 
 pass 
# 把两个Queue都注册到网络上, callable参数关联了Queue对象: 
QueueManager.register('get_task_queue', callable=lambda: task_queue) 
QueueManager.register('get_result_queue', callable=lambda: result_queue) 
# 绑定端口5000, 设置验证码'abc': 
manager = QueueManager(address=('', 5000), authkey=b'abc') 
# 启动Queue: 
manager.start() 
# 获得通过网络访问的Queue对象: 
task = manager.get_task_queue() 
result = manager.get_result_queue() 
# 放几个任务进去: 
for i in range(10): 
 n = random.randint(0, 10000) 
 print('Put task %d...' % n) 
 task.put(n) 
# 从result队列读取结果: 
print('Try get results...') 
for i in range(10): 
 r = result.get(timeout=10) 
 print('Result: %s' % r) 
# 关闭: 
manager.shutdown() 
print('master exit.')

网站栏目:Python分布式进程中你会遇到的问题解析-创新互联
当前URL:http://azwzsj.com/article/cdpese.html