python计算两个列表的相关系数的实现-创新互联
用pandas计算相关系数
创新互联公司专注于企业成都全网营销、网站重做改版、洛阳网站定制设计、自适应品牌网站建设、H5技术、成都做商城网站、集团公司官网建设、成都外贸网站建设、高端网站制作、响应式网页设计等建站业务,价格优惠性价比高,为洛阳等各大城市提供网站开发制作服务。计算相关系数用pandas,比如我想知道风速大小与风向紊乱(标准差来衡量)之间的相关系数,下面是代码:
import pandas as pd import pylab as plt #每小时的阵风风速平均值 all_gust_spd_mean_list = [8.21529411764706, 7.872941176470587, 7.829411764705882, 8.354117647058825, 9.025882352941174, 9.384523809523811, 9.57294117647059, 9.274117647058821, 9.050588235294118, 9.314117647058827, 8.924705882352939, 9.25176470588235, 8.978823529411764, 8.39176470588235, 7.715294117647061, 7.477647058823529, 7.272941176470586, 7.38470588235294, 7.396470588235295, 7.97261904761905, 7.716666666666666, 7.7809523809523835, 7.816666666666668, 7.897590361445783, 8.200000000000001, 8.04761904761905, 7.474999999999999, 9.855952380952383, 11.120000000000001, 10.979761904761906, 10.922619047619051, 10.841176470588234, 9.31566265060241, 8.867058823529415, 9.068235294117642, 8.774698795180722, 8.629411764705884, 8.292941176470586, 7.640000000000007, 7.422352941176469, 7.464705882352944, 8.210588235294113, 8.558823529411763, 8.93095238095238, 9.001176470588234, 8.538095238095238, 8.965882352941172, 9.855294117647057, 8.318918918918921, 9.217647058823525, 8.86470588235294, 8.840000000000002, 9.44235294117647, 9.352380952380953, 9.307058823529408, 9.64047619047619, 9.408333333333333, 9.585882352941175, 8.901190476190477, 7.698823529411764, 7.988235294117645, 9.091764705882353, 9.294117647058819, 8.996470588235297, 9.63764705882353, 9.091764705882353, 8.937647058823533, 8.838823529411764, 8.637647058823534, 8.46, 8.374117647058824, 8.24117647058823, 8.245238095238093, 8.365882352941174, 8.50235294117647, 8.291764705882352, 8.088235294117647, 7.889411764705883, 7.594117647058826, 7.216470588235293, 7.097647058823533, 7.305882352941181, 7.489411764705882, 6.815294117647058, 7.971428571428569, 7.424705882352936, 6.910588235294117, 6.071764705882354, 7.44117647058823, 7.667857142857143, 7.881176470588237, 7.929411764705881, 8.12142857142857, 8.822352941176472, 9.083529411764703, 9.028235294117646, 9.310714285714285, 9.035294117647057, 8.450588235294116, 8.414285714285713, 7.311764705882355, 6.840000000000001, 7.238095238095239, 6.641176470588236, 6.8047619047619055, 6.58705882352941, 6.826190476190474, 6.568235294117643, 7.060000000000001, 7.686904761904761, 8.348235294117643, 8.503529411764701, 8.287058823529414, 8.354117647058823, 7.624705882352941, 7.286904761904765, 7.361176470588235, 7.477647058823531, 7.343529411764706] #每小时的阵风风向标准差 all_gust_agl_dev_list = [0.7507438242046189, 0.768823513771462, 0.849877567310481, 0.8413581558472801, 0.8571319461950748, 0.8665002025305942, 0.9053739533298005, 0.8866979720735791, 0.8045677876888446, 0.873463882661469, 0.832383480871403, 0.778659970340069, 0.7357031045047981, 0.7974723911258534, 0.8039727543149432, 0.8709723763624072, 0.8727745464337923, 0.7896422160341138, 0.8165093346129041, 0.8821296270775546, 0.9193591477905156, 0.8546566314487358, 0.8595040204296921, 0.8075641299052398, 0.7996745617071098, 0.7930869411601498, 0.7578880032016914, 0.9107571156507569, 0.8461201382346486, 0.7553646348127085, 0.8510861123303187, 0.7282631202385544, 0.8588017730198183, 0.7923449370076744, 0.8265083209111689, 0.9599970229643688, 0.8195276021290412, 0.7882592259148272, 0.8036464793287409, 0.8237184691421926, 0.8846862360656914, 0.8136869244513337, 0.8516383375155133, 0.7760301715652644, 0.8644231334629017, 0.831330440569484, 0.8061342111854616, 0.7345896810176235, 1.205089147978776, 0.8266315966774649, 0.8137345300107962, 0.8186966603954983, 0.7836182115343135, 0.8406438908681332, 0.7717723331806998, 0.7932664155269176, 0.7266183593077442, 0.719063143819583, 0.8846434855533486, 0.817552510948495, 0.7571575934024827, 0.865326265251608, 0.9099784335052563, 0.8591794583996128, 0.9295389095340467, 0.8787300860744375, 0.8724277968300532, 0.95284132003256, 0.9288772059881606, 0.8690944948691984, 0.8327213470469693, 0.8339075062700629, 0.886835675339985, 0.8439137877550847, 0.7985495396895048, 0.8406267016063169, 0.8477871130878305, 0.8844025576348077, 0.9186363354492758, 0.8888539157167654, 0.9079462071375304, 0.8699806402308554, 0.8531937701209343, 0.8833108936555343, 0.9317958602705915, 0.9393618445471649, 0.9556065912926689, 0.967220118643412, 0.8882194173154115, 0.9361538853249073, 0.7872261833965604, 0.8608377368219552, 0.8787718518619395, 0.8169189082396561, 0.7965901553530427, 0.8838665737610132, 0.8844338861256802, 0.9008484784943429, 0.8612318707072047, 0.8623792153658019, 1.0033494995180463, 0.9901213381586231, 0.8780115045650467, 0.9172682690843976, 0.9653905755824115, 0.9199829176728873, 0.9180048223906779, 0.9172043382441968, 0.9267783259554074, 0.9231225672912022, 0.7945054721199195, 0.8655558517080688, 0.8306327906597787, 0.8457559701865576, 0.8038459124570336, 0.8519646989317945, 0.7735358658599594, 0.8612134954656397, 0.8879135146161856] g_s_m = pd.Series(all_gust_spd_mean_list) #利用Series将列表转换成新的、pandas可处理的数据 g_a_d = pd.Series(all_gust_agl_dev_list) corr_gust = round(g_s_m.corr(g_a_d), 4) #计算标准差,round(a, 4)是保留a的前四位小数 print('corr_gust :', corr_gust) #最后画一下两列表散点图,直观感受下,结合相关系数揣摩揣摩 plt.scatter(all_gust_spd_mean_list, all_gust_agl_dev_list) plt.title('corr_gust :' + str(corr_gust), fontproperties='SimHei') #给图写上title plt.show()
另外有需要云服务器可以了解下创新互联scvps.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、高防服务器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。
当前题目:python计算两个列表的相关系数的实现-创新互联
URL链接:http://azwzsj.com/article/ccshhh.html